Solve for s
s=\frac{y^{2}}{187720}
Solve for y (complex solution)
y=-38\sqrt{130s}
y=38\sqrt{130s}
Solve for y
y=38\sqrt{130s}
y=-38\sqrt{130s}\text{, }s\geq 0
Graph
Share
Copied to clipboard
592\times 6y^{2}=1.06856\times 10^{6}\times 624s
To multiply powers of the same base, add their exponents. Add -3 and 9 to get 6.
3552y^{2}=1.06856\times 10^{6}\times 624s
Multiply 592 and 6 to get 3552.
3552y^{2}=1.06856\times 1000000\times 624s
Calculate 10 to the power of 6 and get 1000000.
3552y^{2}=1068560\times 624s
Multiply 1.06856 and 1000000 to get 1068560.
3552y^{2}=666781440s
Multiply 1068560 and 624 to get 666781440.
666781440s=3552y^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{666781440s}{666781440}=\frac{3552y^{2}}{666781440}
Divide both sides by 666781440.
s=\frac{3552y^{2}}{666781440}
Dividing by 666781440 undoes the multiplication by 666781440.
s=\frac{y^{2}}{187720}
Divide 3552y^{2} by 666781440.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}