Solve for x
x=\frac{39\sqrt{10}}{10}+13\approx 25.332882875
x=-\frac{39\sqrt{10}}{10}+13\approx 0.667117125
Graph
Share
Copied to clipboard
-x^{2}+26x+43=59.9
Swap sides so that all variable terms are on the left hand side.
-x^{2}+26x+43-59.9=0
Subtract 59.9 from both sides.
-x^{2}+26x-16.9=0
Subtract 59.9 from 43 to get -16.9.
x=\frac{-26±\sqrt{26^{2}-4\left(-1\right)\left(-16.9\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 26 for b, and -16.9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\left(-1\right)\left(-16.9\right)}}{2\left(-1\right)}
Square 26.
x=\frac{-26±\sqrt{676+4\left(-16.9\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-26±\sqrt{676-67.6}}{2\left(-1\right)}
Multiply 4 times -16.9.
x=\frac{-26±\sqrt{608.4}}{2\left(-1\right)}
Add 676 to -67.6.
x=\frac{-26±\frac{39\sqrt{10}}{5}}{2\left(-1\right)}
Take the square root of 608.4.
x=\frac{-26±\frac{39\sqrt{10}}{5}}{-2}
Multiply 2 times -1.
x=\frac{\frac{39\sqrt{10}}{5}-26}{-2}
Now solve the equation x=\frac{-26±\frac{39\sqrt{10}}{5}}{-2} when ± is plus. Add -26 to \frac{39\sqrt{10}}{5}.
x=-\frac{39\sqrt{10}}{10}+13
Divide -26+\frac{39\sqrt{10}}{5} by -2.
x=\frac{-\frac{39\sqrt{10}}{5}-26}{-2}
Now solve the equation x=\frac{-26±\frac{39\sqrt{10}}{5}}{-2} when ± is minus. Subtract \frac{39\sqrt{10}}{5} from -26.
x=\frac{39\sqrt{10}}{10}+13
Divide -26-\frac{39\sqrt{10}}{5} by -2.
x=-\frac{39\sqrt{10}}{10}+13 x=\frac{39\sqrt{10}}{10}+13
The equation is now solved.
-x^{2}+26x+43=59.9
Swap sides so that all variable terms are on the left hand side.
-x^{2}+26x=59.9-43
Subtract 43 from both sides.
-x^{2}+26x=16.9
Subtract 43 from 59.9 to get 16.9.
-x^{2}+26x=\frac{169}{10}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+26x}{-1}=\frac{\frac{169}{10}}{-1}
Divide both sides by -1.
x^{2}+\frac{26}{-1}x=\frac{\frac{169}{10}}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-26x=\frac{\frac{169}{10}}{-1}
Divide 26 by -1.
x^{2}-26x=-\frac{169}{10}
Divide \frac{169}{10} by -1.
x^{2}-26x+\left(-13\right)^{2}=-\frac{169}{10}+\left(-13\right)^{2}
Divide -26, the coefficient of the x term, by 2 to get -13. Then add the square of -13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-26x+169=-\frac{169}{10}+169
Square -13.
x^{2}-26x+169=\frac{1521}{10}
Add -\frac{169}{10} to 169.
\left(x-13\right)^{2}=\frac{1521}{10}
Factor x^{2}-26x+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-13\right)^{2}}=\sqrt{\frac{1521}{10}}
Take the square root of both sides of the equation.
x-13=\frac{39\sqrt{10}}{10} x-13=-\frac{39\sqrt{10}}{10}
Simplify.
x=\frac{39\sqrt{10}}{10}+13 x=-\frac{39\sqrt{10}}{10}+13
Add 13 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}