Solve for x
x = \frac{2 \sqrt{255} + 90}{59} \approx 2.066736252
x=\frac{90-2\sqrt{255}}{59}\approx 0.984111206
Graph
Share
Copied to clipboard
59x^{2}-180x+120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 59\times 120}}{2\times 59}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 59 for a, -180 for b, and 120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 59\times 120}}{2\times 59}
Square -180.
x=\frac{-\left(-180\right)±\sqrt{32400-236\times 120}}{2\times 59}
Multiply -4 times 59.
x=\frac{-\left(-180\right)±\sqrt{32400-28320}}{2\times 59}
Multiply -236 times 120.
x=\frac{-\left(-180\right)±\sqrt{4080}}{2\times 59}
Add 32400 to -28320.
x=\frac{-\left(-180\right)±4\sqrt{255}}{2\times 59}
Take the square root of 4080.
x=\frac{180±4\sqrt{255}}{2\times 59}
The opposite of -180 is 180.
x=\frac{180±4\sqrt{255}}{118}
Multiply 2 times 59.
x=\frac{4\sqrt{255}+180}{118}
Now solve the equation x=\frac{180±4\sqrt{255}}{118} when ± is plus. Add 180 to 4\sqrt{255}.
x=\frac{2\sqrt{255}+90}{59}
Divide 180+4\sqrt{255} by 118.
x=\frac{180-4\sqrt{255}}{118}
Now solve the equation x=\frac{180±4\sqrt{255}}{118} when ± is minus. Subtract 4\sqrt{255} from 180.
x=\frac{90-2\sqrt{255}}{59}
Divide 180-4\sqrt{255} by 118.
x=\frac{2\sqrt{255}+90}{59} x=\frac{90-2\sqrt{255}}{59}
The equation is now solved.
59x^{2}-180x+120=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
59x^{2}-180x+120-120=-120
Subtract 120 from both sides of the equation.
59x^{2}-180x=-120
Subtracting 120 from itself leaves 0.
\frac{59x^{2}-180x}{59}=-\frac{120}{59}
Divide both sides by 59.
x^{2}-\frac{180}{59}x=-\frac{120}{59}
Dividing by 59 undoes the multiplication by 59.
x^{2}-\frac{180}{59}x+\left(-\frac{90}{59}\right)^{2}=-\frac{120}{59}+\left(-\frac{90}{59}\right)^{2}
Divide -\frac{180}{59}, the coefficient of the x term, by 2 to get -\frac{90}{59}. Then add the square of -\frac{90}{59} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{180}{59}x+\frac{8100}{3481}=-\frac{120}{59}+\frac{8100}{3481}
Square -\frac{90}{59} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{180}{59}x+\frac{8100}{3481}=\frac{1020}{3481}
Add -\frac{120}{59} to \frac{8100}{3481} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{90}{59}\right)^{2}=\frac{1020}{3481}
Factor x^{2}-\frac{180}{59}x+\frac{8100}{3481}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{90}{59}\right)^{2}}=\sqrt{\frac{1020}{3481}}
Take the square root of both sides of the equation.
x-\frac{90}{59}=\frac{2\sqrt{255}}{59} x-\frac{90}{59}=-\frac{2\sqrt{255}}{59}
Simplify.
x=\frac{2\sqrt{255}+90}{59} x=\frac{90-2\sqrt{255}}{59}
Add \frac{90}{59} to both sides of the equation.
x ^ 2 -\frac{180}{59}x +\frac{120}{59} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 59
r + s = \frac{180}{59} rs = \frac{120}{59}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{90}{59} - u s = \frac{90}{59} + u
Two numbers r and s sum up to \frac{180}{59} exactly when the average of the two numbers is \frac{1}{2}*\frac{180}{59} = \frac{90}{59}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{90}{59} - u) (\frac{90}{59} + u) = \frac{120}{59}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{120}{59}
\frac{8100}{3481} - u^2 = \frac{120}{59}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{120}{59}-\frac{8100}{3481} = -\frac{1020}{3481}
Simplify the expression by subtracting \frac{8100}{3481} on both sides
u^2 = \frac{1020}{3481} u = \pm\sqrt{\frac{1020}{3481}} = \pm \frac{\sqrt{1020}}{59}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{90}{59} - \frac{\sqrt{1020}}{59} = 0.984 s = \frac{90}{59} + \frac{\sqrt{1020}}{59} = 2.067
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}