Evaluate
\frac{2946}{299}\approx 9.852842809
Factor
\frac{2 \cdot 3 \cdot 491}{13 \cdot 23} = 9\frac{255}{299} = 9.852842809364548
Share
Copied to clipboard
\begin{array}{l}\phantom{598)}\phantom{1}\\598\overline{)5892}\\\end{array}
Use the 1^{st} digit 5 from dividend 5892
\begin{array}{l}\phantom{598)}0\phantom{2}\\598\overline{)5892}\\\end{array}
Since 5 is less than 598, use the next digit 8 from dividend 5892 and add 0 to the quotient
\begin{array}{l}\phantom{598)}0\phantom{3}\\598\overline{)5892}\\\end{array}
Use the 2^{nd} digit 8 from dividend 5892
\begin{array}{l}\phantom{598)}00\phantom{4}\\598\overline{)5892}\\\end{array}
Since 58 is less than 598, use the next digit 9 from dividend 5892 and add 0 to the quotient
\begin{array}{l}\phantom{598)}00\phantom{5}\\598\overline{)5892}\\\end{array}
Use the 3^{rd} digit 9 from dividend 5892
\begin{array}{l}\phantom{598)}000\phantom{6}\\598\overline{)5892}\\\end{array}
Since 589 is less than 598, use the next digit 2 from dividend 5892 and add 0 to the quotient
\begin{array}{l}\phantom{598)}000\phantom{7}\\598\overline{)5892}\\\end{array}
Use the 4^{th} digit 2 from dividend 5892
\begin{array}{l}\phantom{598)}0009\phantom{8}\\598\overline{)5892}\\\phantom{598)}\underline{\phantom{}5382\phantom{}}\\\phantom{598)9}510\\\end{array}
Find closest multiple of 598 to 5892. We see that 9 \times 598 = 5382 is the nearest. Now subtract 5382 from 5892 to get reminder 510. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }510
Since 510 is less than 598, stop the division. The reminder is 510. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}