Evaluate
\frac{585}{44}\approx 13.295454545
Factor
\frac{3 ^ {2} \cdot 5 \cdot 13}{2 ^ {2} \cdot 11} = 13\frac{13}{44} = 13.295454545454545
Share
Copied to clipboard
\begin{array}{l}\phantom{44)}\phantom{1}\\44\overline{)585}\\\end{array}
Use the 1^{st} digit 5 from dividend 585
\begin{array}{l}\phantom{44)}0\phantom{2}\\44\overline{)585}\\\end{array}
Since 5 is less than 44, use the next digit 8 from dividend 585 and add 0 to the quotient
\begin{array}{l}\phantom{44)}0\phantom{3}\\44\overline{)585}\\\end{array}
Use the 2^{nd} digit 8 from dividend 585
\begin{array}{l}\phantom{44)}01\phantom{4}\\44\overline{)585}\\\phantom{44)}\underline{\phantom{}44\phantom{9}}\\\phantom{44)}14\\\end{array}
Find closest multiple of 44 to 58. We see that 1 \times 44 = 44 is the nearest. Now subtract 44 from 58 to get reminder 14. Add 1 to quotient.
\begin{array}{l}\phantom{44)}01\phantom{5}\\44\overline{)585}\\\phantom{44)}\underline{\phantom{}44\phantom{9}}\\\phantom{44)}145\\\end{array}
Use the 3^{rd} digit 5 from dividend 585
\begin{array}{l}\phantom{44)}013\phantom{6}\\44\overline{)585}\\\phantom{44)}\underline{\phantom{}44\phantom{9}}\\\phantom{44)}145\\\phantom{44)}\underline{\phantom{}132\phantom{}}\\\phantom{44)9}13\\\end{array}
Find closest multiple of 44 to 145. We see that 3 \times 44 = 132 is the nearest. Now subtract 132 from 145 to get reminder 13. Add 3 to quotient.
\text{Quotient: }13 \text{Reminder: }13
Since 13 is less than 44, stop the division. The reminder is 13. The topmost line 013 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}