Solve for R
R=8
R=-208
Share
Copied to clipboard
\frac{5832}{5000}=\left(1+\frac{R}{100}\right)^{2}
Divide both sides by 5000.
\frac{729}{625}=\left(1+\frac{R}{100}\right)^{2}
Reduce the fraction \frac{5832}{5000} to lowest terms by extracting and canceling out 8.
\frac{729}{625}=1+2\times \frac{R}{100}+\left(\frac{R}{100}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{R}{100}\right)^{2}.
\frac{729}{625}=1+\frac{R}{50}+\left(\frac{R}{100}\right)^{2}
Cancel out 100, the greatest common factor in 2 and 100.
\frac{729}{625}=1+\frac{R}{50}+\frac{R^{2}}{100^{2}}
To raise \frac{R}{100} to a power, raise both numerator and denominator to the power and then divide.
\frac{729}{625}=\frac{100^{2}}{100^{2}}+\frac{R}{50}+\frac{R^{2}}{100^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{100^{2}}{100^{2}}.
\frac{729}{625}=\frac{100^{2}+R^{2}}{100^{2}}+\frac{R}{50}
Since \frac{100^{2}}{100^{2}} and \frac{R^{2}}{100^{2}} have the same denominator, add them by adding their numerators.
\frac{729}{625}=\frac{10000+R^{2}}{100^{2}}+\frac{R}{50}
Combine like terms in 100^{2}+R^{2}.
\frac{729}{625}=\frac{10000+R^{2}}{10000}+\frac{200R}{10000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 100^{2} and 50 is 10000. Multiply \frac{R}{50} times \frac{200}{200}.
\frac{729}{625}=\frac{10000+R^{2}+200R}{10000}
Since \frac{10000+R^{2}}{10000} and \frac{200R}{10000} have the same denominator, add them by adding their numerators.
\frac{729}{625}=1+\frac{1}{10000}R^{2}+\frac{1}{50}R
Divide each term of 10000+R^{2}+200R by 10000 to get 1+\frac{1}{10000}R^{2}+\frac{1}{50}R.
1+\frac{1}{10000}R^{2}+\frac{1}{50}R=\frac{729}{625}
Swap sides so that all variable terms are on the left hand side.
1+\frac{1}{10000}R^{2}+\frac{1}{50}R-\frac{729}{625}=0
Subtract \frac{729}{625} from both sides.
-\frac{104}{625}+\frac{1}{10000}R^{2}+\frac{1}{50}R=0
Subtract \frac{729}{625} from 1 to get -\frac{104}{625}.
\frac{1}{10000}R^{2}+\frac{1}{50}R-\frac{104}{625}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
R=\frac{-\frac{1}{50}±\sqrt{\left(\frac{1}{50}\right)^{2}-4\times \frac{1}{10000}\left(-\frac{104}{625}\right)}}{2\times \frac{1}{10000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{10000} for a, \frac{1}{50} for b, and -\frac{104}{625} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{-\frac{1}{50}±\sqrt{\frac{1}{2500}-4\times \frac{1}{10000}\left(-\frac{104}{625}\right)}}{2\times \frac{1}{10000}}
Square \frac{1}{50} by squaring both the numerator and the denominator of the fraction.
R=\frac{-\frac{1}{50}±\sqrt{\frac{1}{2500}-\frac{1}{2500}\left(-\frac{104}{625}\right)}}{2\times \frac{1}{10000}}
Multiply -4 times \frac{1}{10000}.
R=\frac{-\frac{1}{50}±\sqrt{\frac{1}{2500}+\frac{26}{390625}}}{2\times \frac{1}{10000}}
Multiply -\frac{1}{2500} times -\frac{104}{625} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
R=\frac{-\frac{1}{50}±\sqrt{\frac{729}{1562500}}}{2\times \frac{1}{10000}}
Add \frac{1}{2500} to \frac{26}{390625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
R=\frac{-\frac{1}{50}±\frac{27}{1250}}{2\times \frac{1}{10000}}
Take the square root of \frac{729}{1562500}.
R=\frac{-\frac{1}{50}±\frac{27}{1250}}{\frac{1}{5000}}
Multiply 2 times \frac{1}{10000}.
R=\frac{\frac{1}{625}}{\frac{1}{5000}}
Now solve the equation R=\frac{-\frac{1}{50}±\frac{27}{1250}}{\frac{1}{5000}} when ± is plus. Add -\frac{1}{50} to \frac{27}{1250} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
R=8
Divide \frac{1}{625} by \frac{1}{5000} by multiplying \frac{1}{625} by the reciprocal of \frac{1}{5000}.
R=-\frac{\frac{26}{625}}{\frac{1}{5000}}
Now solve the equation R=\frac{-\frac{1}{50}±\frac{27}{1250}}{\frac{1}{5000}} when ± is minus. Subtract \frac{27}{1250} from -\frac{1}{50} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
R=-208
Divide -\frac{26}{625} by \frac{1}{5000} by multiplying -\frac{26}{625} by the reciprocal of \frac{1}{5000}.
R=8 R=-208
The equation is now solved.
\frac{5832}{5000}=\left(1+\frac{R}{100}\right)^{2}
Divide both sides by 5000.
\frac{729}{625}=\left(1+\frac{R}{100}\right)^{2}
Reduce the fraction \frac{5832}{5000} to lowest terms by extracting and canceling out 8.
\frac{729}{625}=1+2\times \frac{R}{100}+\left(\frac{R}{100}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\frac{R}{100}\right)^{2}.
\frac{729}{625}=1+\frac{R}{50}+\left(\frac{R}{100}\right)^{2}
Cancel out 100, the greatest common factor in 2 and 100.
\frac{729}{625}=1+\frac{R}{50}+\frac{R^{2}}{100^{2}}
To raise \frac{R}{100} to a power, raise both numerator and denominator to the power and then divide.
\frac{729}{625}=\frac{100^{2}}{100^{2}}+\frac{R}{50}+\frac{R^{2}}{100^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{100^{2}}{100^{2}}.
\frac{729}{625}=\frac{100^{2}+R^{2}}{100^{2}}+\frac{R}{50}
Since \frac{100^{2}}{100^{2}} and \frac{R^{2}}{100^{2}} have the same denominator, add them by adding their numerators.
\frac{729}{625}=\frac{10000+R^{2}}{100^{2}}+\frac{R}{50}
Combine like terms in 100^{2}+R^{2}.
\frac{729}{625}=\frac{10000+R^{2}}{10000}+\frac{200R}{10000}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 100^{2} and 50 is 10000. Multiply \frac{R}{50} times \frac{200}{200}.
\frac{729}{625}=\frac{10000+R^{2}+200R}{10000}
Since \frac{10000+R^{2}}{10000} and \frac{200R}{10000} have the same denominator, add them by adding their numerators.
\frac{729}{625}=1+\frac{1}{10000}R^{2}+\frac{1}{50}R
Divide each term of 10000+R^{2}+200R by 10000 to get 1+\frac{1}{10000}R^{2}+\frac{1}{50}R.
1+\frac{1}{10000}R^{2}+\frac{1}{50}R=\frac{729}{625}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{10000}R^{2}+\frac{1}{50}R=\frac{729}{625}-1
Subtract 1 from both sides.
\frac{1}{10000}R^{2}+\frac{1}{50}R=\frac{104}{625}
Subtract 1 from \frac{729}{625} to get \frac{104}{625}.
\frac{\frac{1}{10000}R^{2}+\frac{1}{50}R}{\frac{1}{10000}}=\frac{\frac{104}{625}}{\frac{1}{10000}}
Multiply both sides by 10000.
R^{2}+\frac{\frac{1}{50}}{\frac{1}{10000}}R=\frac{\frac{104}{625}}{\frac{1}{10000}}
Dividing by \frac{1}{10000} undoes the multiplication by \frac{1}{10000}.
R^{2}+200R=\frac{\frac{104}{625}}{\frac{1}{10000}}
Divide \frac{1}{50} by \frac{1}{10000} by multiplying \frac{1}{50} by the reciprocal of \frac{1}{10000}.
R^{2}+200R=1664
Divide \frac{104}{625} by \frac{1}{10000} by multiplying \frac{104}{625} by the reciprocal of \frac{1}{10000}.
R^{2}+200R+100^{2}=1664+100^{2}
Divide 200, the coefficient of the x term, by 2 to get 100. Then add the square of 100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
R^{2}+200R+10000=1664+10000
Square 100.
R^{2}+200R+10000=11664
Add 1664 to 10000.
\left(R+100\right)^{2}=11664
Factor R^{2}+200R+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(R+100\right)^{2}}=\sqrt{11664}
Take the square root of both sides of the equation.
R+100=108 R+100=-108
Simplify.
R=8 R=-208
Subtract 100 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}