Evaluate
\frac{582}{23}\approx 25.304347826
Factor
\frac{2 \cdot 3 \cdot 97}{23} = 25\frac{7}{23} = 25.304347826086957
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)582}\\\end{array}
Use the 1^{st} digit 5 from dividend 582
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)582}\\\end{array}
Since 5 is less than 23, use the next digit 8 from dividend 582 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)582}\\\end{array}
Use the 2^{nd} digit 8 from dividend 582
\begin{array}{l}\phantom{23)}02\phantom{4}\\23\overline{)582}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}12\\\end{array}
Find closest multiple of 23 to 58. We see that 2 \times 23 = 46 is the nearest. Now subtract 46 from 58 to get reminder 12. Add 2 to quotient.
\begin{array}{l}\phantom{23)}02\phantom{5}\\23\overline{)582}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}122\\\end{array}
Use the 3^{rd} digit 2 from dividend 582
\begin{array}{l}\phantom{23)}025\phantom{6}\\23\overline{)582}\\\phantom{23)}\underline{\phantom{}46\phantom{9}}\\\phantom{23)}122\\\phantom{23)}\underline{\phantom{}115\phantom{}}\\\phantom{23)99}7\\\end{array}
Find closest multiple of 23 to 122. We see that 5 \times 23 = 115 is the nearest. Now subtract 115 from 122 to get reminder 7. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }7
Since 7 is less than 23, stop the division. The reminder is 7. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}