Evaluate
\frac{581}{400}=1.4525
Factor
\frac{7 \cdot 83}{2 ^ {4} \cdot 5 ^ {2}} = 1\frac{181}{400} = 1.4525
Share
Copied to clipboard
\begin{array}{l}\phantom{400)}\phantom{1}\\400\overline{)581}\\\end{array}
Use the 1^{st} digit 5 from dividend 581
\begin{array}{l}\phantom{400)}0\phantom{2}\\400\overline{)581}\\\end{array}
Since 5 is less than 400, use the next digit 8 from dividend 581 and add 0 to the quotient
\begin{array}{l}\phantom{400)}0\phantom{3}\\400\overline{)581}\\\end{array}
Use the 2^{nd} digit 8 from dividend 581
\begin{array}{l}\phantom{400)}00\phantom{4}\\400\overline{)581}\\\end{array}
Since 58 is less than 400, use the next digit 1 from dividend 581 and add 0 to the quotient
\begin{array}{l}\phantom{400)}00\phantom{5}\\400\overline{)581}\\\end{array}
Use the 3^{rd} digit 1 from dividend 581
\begin{array}{l}\phantom{400)}001\phantom{6}\\400\overline{)581}\\\phantom{400)}\underline{\phantom{}400\phantom{}}\\\phantom{400)}181\\\end{array}
Find closest multiple of 400 to 581. We see that 1 \times 400 = 400 is the nearest. Now subtract 400 from 581 to get reminder 181. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }181
Since 181 is less than 400, stop the division. The reminder is 181. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}