Evaluate
\frac{290}{133}\approx 2.180451128
Factor
\frac{2 \cdot 5 \cdot 29}{7 \cdot 19} = 2\frac{24}{133} = 2.180451127819549
Share
Copied to clipboard
\begin{array}{l}\phantom{266)}\phantom{1}\\266\overline{)580}\\\end{array}
Use the 1^{st} digit 5 from dividend 580
\begin{array}{l}\phantom{266)}0\phantom{2}\\266\overline{)580}\\\end{array}
Since 5 is less than 266, use the next digit 8 from dividend 580 and add 0 to the quotient
\begin{array}{l}\phantom{266)}0\phantom{3}\\266\overline{)580}\\\end{array}
Use the 2^{nd} digit 8 from dividend 580
\begin{array}{l}\phantom{266)}00\phantom{4}\\266\overline{)580}\\\end{array}
Since 58 is less than 266, use the next digit 0 from dividend 580 and add 0 to the quotient
\begin{array}{l}\phantom{266)}00\phantom{5}\\266\overline{)580}\\\end{array}
Use the 3^{rd} digit 0 from dividend 580
\begin{array}{l}\phantom{266)}002\phantom{6}\\266\overline{)580}\\\phantom{266)}\underline{\phantom{}532\phantom{}}\\\phantom{266)9}48\\\end{array}
Find closest multiple of 266 to 580. We see that 2 \times 266 = 532 is the nearest. Now subtract 532 from 580 to get reminder 48. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }48
Since 48 is less than 266, stop the division. The reminder is 48. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}