Solve for x
x=\frac{11\sqrt{30}}{58}-\frac{9}{29}\approx 0.728439333
x=-\frac{11\sqrt{30}}{58}-\frac{9}{29}\approx -1.349128988
Graph
Share
Copied to clipboard
58x^{2}+36x-57=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\times 58\left(-57\right)}}{2\times 58}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 58 for a, 36 for b, and -57 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 58\left(-57\right)}}{2\times 58}
Square 36.
x=\frac{-36±\sqrt{1296-232\left(-57\right)}}{2\times 58}
Multiply -4 times 58.
x=\frac{-36±\sqrt{1296+13224}}{2\times 58}
Multiply -232 times -57.
x=\frac{-36±\sqrt{14520}}{2\times 58}
Add 1296 to 13224.
x=\frac{-36±22\sqrt{30}}{2\times 58}
Take the square root of 14520.
x=\frac{-36±22\sqrt{30}}{116}
Multiply 2 times 58.
x=\frac{22\sqrt{30}-36}{116}
Now solve the equation x=\frac{-36±22\sqrt{30}}{116} when ± is plus. Add -36 to 22\sqrt{30}.
x=\frac{11\sqrt{30}}{58}-\frac{9}{29}
Divide -36+22\sqrt{30} by 116.
x=\frac{-22\sqrt{30}-36}{116}
Now solve the equation x=\frac{-36±22\sqrt{30}}{116} when ± is minus. Subtract 22\sqrt{30} from -36.
x=-\frac{11\sqrt{30}}{58}-\frac{9}{29}
Divide -36-22\sqrt{30} by 116.
x=\frac{11\sqrt{30}}{58}-\frac{9}{29} x=-\frac{11\sqrt{30}}{58}-\frac{9}{29}
The equation is now solved.
58x^{2}+36x-57=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
58x^{2}+36x-57-\left(-57\right)=-\left(-57\right)
Add 57 to both sides of the equation.
58x^{2}+36x=-\left(-57\right)
Subtracting -57 from itself leaves 0.
58x^{2}+36x=57
Subtract -57 from 0.
\frac{58x^{2}+36x}{58}=\frac{57}{58}
Divide both sides by 58.
x^{2}+\frac{36}{58}x=\frac{57}{58}
Dividing by 58 undoes the multiplication by 58.
x^{2}+\frac{18}{29}x=\frac{57}{58}
Reduce the fraction \frac{36}{58} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{18}{29}x+\left(\frac{9}{29}\right)^{2}=\frac{57}{58}+\left(\frac{9}{29}\right)^{2}
Divide \frac{18}{29}, the coefficient of the x term, by 2 to get \frac{9}{29}. Then add the square of \frac{9}{29} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{18}{29}x+\frac{81}{841}=\frac{57}{58}+\frac{81}{841}
Square \frac{9}{29} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{18}{29}x+\frac{81}{841}=\frac{1815}{1682}
Add \frac{57}{58} to \frac{81}{841} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{29}\right)^{2}=\frac{1815}{1682}
Factor x^{2}+\frac{18}{29}x+\frac{81}{841}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{29}\right)^{2}}=\sqrt{\frac{1815}{1682}}
Take the square root of both sides of the equation.
x+\frac{9}{29}=\frac{11\sqrt{30}}{58} x+\frac{9}{29}=-\frac{11\sqrt{30}}{58}
Simplify.
x=\frac{11\sqrt{30}}{58}-\frac{9}{29} x=-\frac{11\sqrt{30}}{58}-\frac{9}{29}
Subtract \frac{9}{29} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}