Evaluate
\frac{58}{19}\approx 3.052631579
Factor
\frac{2 \cdot 29}{19} = 3\frac{1}{19} = 3.0526315789473686
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)58}\\\end{array}
Use the 1^{st} digit 5 from dividend 58
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)58}\\\end{array}
Since 5 is less than 19, use the next digit 8 from dividend 58 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)58}\\\end{array}
Use the 2^{nd} digit 8 from dividend 58
\begin{array}{l}\phantom{19)}03\phantom{4}\\19\overline{)58}\\\phantom{19)}\underline{\phantom{}57\phantom{}}\\\phantom{19)9}1\\\end{array}
Find closest multiple of 19 to 58. We see that 3 \times 19 = 57 is the nearest. Now subtract 57 from 58 to get reminder 1. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }1
Since 1 is less than 19, stop the division. The reminder is 1. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}