Solve for x
x = \frac{212}{5} = 42\frac{2}{5} = 42.4
Graph
Share
Copied to clipboard
58\left(x-4\right)=48\left(x+4\right)
Variable x cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by x-4.
58x-232=48\left(x+4\right)
Use the distributive property to multiply 58 by x-4.
58x-232=48x+192
Use the distributive property to multiply 48 by x+4.
58x-232-48x=192
Subtract 48x from both sides.
10x-232=192
Combine 58x and -48x to get 10x.
10x=192+232
Add 232 to both sides.
10x=424
Add 192 and 232 to get 424.
x=\frac{424}{10}
Divide both sides by 10.
x=\frac{212}{5}
Reduce the fraction \frac{424}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}