Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

578x^{2}+39x-117=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
578x^{2}+39x-117-6=6-6
Subtract 6 from both sides of the equation.
578x^{2}+39x-117-6=0
Subtracting 6 from itself leaves 0.
578x^{2}+39x-123=0
Subtract 6 from -117.
x=\frac{-39±\sqrt{39^{2}-4\times 578\left(-123\right)}}{2\times 578}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 578 for a, 39 for b, and -123 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-39±\sqrt{1521-4\times 578\left(-123\right)}}{2\times 578}
Square 39.
x=\frac{-39±\sqrt{1521-2312\left(-123\right)}}{2\times 578}
Multiply -4 times 578.
x=\frac{-39±\sqrt{1521+284376}}{2\times 578}
Multiply -2312 times -123.
x=\frac{-39±\sqrt{285897}}{2\times 578}
Add 1521 to 284376.
x=\frac{-39±\sqrt{285897}}{1156}
Multiply 2 times 578.
x=\frac{\sqrt{285897}-39}{1156}
Now solve the equation x=\frac{-39±\sqrt{285897}}{1156} when ± is plus. Add -39 to \sqrt{285897}.
x=\frac{-\sqrt{285897}-39}{1156}
Now solve the equation x=\frac{-39±\sqrt{285897}}{1156} when ± is minus. Subtract \sqrt{285897} from -39.
x=\frac{\sqrt{285897}-39}{1156} x=\frac{-\sqrt{285897}-39}{1156}
The equation is now solved.
578x^{2}+39x-117=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
578x^{2}+39x-117-\left(-117\right)=6-\left(-117\right)
Add 117 to both sides of the equation.
578x^{2}+39x=6-\left(-117\right)
Subtracting -117 from itself leaves 0.
578x^{2}+39x=123
Subtract -117 from 6.
\frac{578x^{2}+39x}{578}=\frac{123}{578}
Divide both sides by 578.
x^{2}+\frac{39}{578}x=\frac{123}{578}
Dividing by 578 undoes the multiplication by 578.
x^{2}+\frac{39}{578}x+\left(\frac{39}{1156}\right)^{2}=\frac{123}{578}+\left(\frac{39}{1156}\right)^{2}
Divide \frac{39}{578}, the coefficient of the x term, by 2 to get \frac{39}{1156}. Then add the square of \frac{39}{1156} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{39}{578}x+\frac{1521}{1336336}=\frac{123}{578}+\frac{1521}{1336336}
Square \frac{39}{1156} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{39}{578}x+\frac{1521}{1336336}=\frac{285897}{1336336}
Add \frac{123}{578} to \frac{1521}{1336336} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{39}{1156}\right)^{2}=\frac{285897}{1336336}
Factor x^{2}+\frac{39}{578}x+\frac{1521}{1336336}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{39}{1156}\right)^{2}}=\sqrt{\frac{285897}{1336336}}
Take the square root of both sides of the equation.
x+\frac{39}{1156}=\frac{\sqrt{285897}}{1156} x+\frac{39}{1156}=-\frac{\sqrt{285897}}{1156}
Simplify.
x=\frac{\sqrt{285897}-39}{1156} x=\frac{-\sqrt{285897}-39}{1156}
Subtract \frac{39}{1156} from both sides of the equation.