Evaluate
\frac{288}{187}\approx 1.540106952
Factor
\frac{2 ^ {5} \cdot 3 ^ {2}}{11 \cdot 17} = 1\frac{101}{187} = 1.5401069518716577
Share
Copied to clipboard
\begin{array}{l}\phantom{374)}\phantom{1}\\374\overline{)576}\\\end{array}
Use the 1^{st} digit 5 from dividend 576
\begin{array}{l}\phantom{374)}0\phantom{2}\\374\overline{)576}\\\end{array}
Since 5 is less than 374, use the next digit 7 from dividend 576 and add 0 to the quotient
\begin{array}{l}\phantom{374)}0\phantom{3}\\374\overline{)576}\\\end{array}
Use the 2^{nd} digit 7 from dividend 576
\begin{array}{l}\phantom{374)}00\phantom{4}\\374\overline{)576}\\\end{array}
Since 57 is less than 374, use the next digit 6 from dividend 576 and add 0 to the quotient
\begin{array}{l}\phantom{374)}00\phantom{5}\\374\overline{)576}\\\end{array}
Use the 3^{rd} digit 6 from dividend 576
\begin{array}{l}\phantom{374)}001\phantom{6}\\374\overline{)576}\\\phantom{374)}\underline{\phantom{}374\phantom{}}\\\phantom{374)}202\\\end{array}
Find closest multiple of 374 to 576. We see that 1 \times 374 = 374 is the nearest. Now subtract 374 from 576 to get reminder 202. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }202
Since 202 is less than 374, stop the division. The reminder is 202. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}