Evaluate
\frac{288}{11}\approx 26.181818182
Factor
\frac{2 ^ {5} \cdot 3 ^ {2}}{11} = 26\frac{2}{11} = 26.181818181818183
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)576}\\\end{array}
Use the 1^{st} digit 5 from dividend 576
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)576}\\\end{array}
Since 5 is less than 22, use the next digit 7 from dividend 576 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)576}\\\end{array}
Use the 2^{nd} digit 7 from dividend 576
\begin{array}{l}\phantom{22)}02\phantom{4}\\22\overline{)576}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)}13\\\end{array}
Find closest multiple of 22 to 57. We see that 2 \times 22 = 44 is the nearest. Now subtract 44 from 57 to get reminder 13. Add 2 to quotient.
\begin{array}{l}\phantom{22)}02\phantom{5}\\22\overline{)576}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)}136\\\end{array}
Use the 3^{rd} digit 6 from dividend 576
\begin{array}{l}\phantom{22)}026\phantom{6}\\22\overline{)576}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)}136\\\phantom{22)}\underline{\phantom{}132\phantom{}}\\\phantom{22)99}4\\\end{array}
Find closest multiple of 22 to 136. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 136 to get reminder 4. Add 6 to quotient.
\text{Quotient: }26 \text{Reminder: }4
Since 4 is less than 22, stop the division. The reminder is 4. The topmost line 026 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}