Solve for x
x=-\frac{\sqrt{18906}}{115}+1\approx -0.195644269
x=\frac{\sqrt{18906}}{115}+1\approx 2.195644269
Graph
Share
Copied to clipboard
\frac{57.5\left(-x+1\right)^{2}}{57.5}=\frac{82.2}{57.5}
Divide both sides of the equation by 57.5, which is the same as multiplying both sides by the reciprocal of the fraction.
\left(-x+1\right)^{2}=\frac{82.2}{57.5}
Dividing by 57.5 undoes the multiplication by 57.5.
\left(-x+1\right)^{2}=\frac{822}{575}
Divide 82.2 by 57.5 by multiplying 82.2 by the reciprocal of 57.5.
-x+1=\frac{\sqrt{18906}}{115} -x+1=-\frac{\sqrt{18906}}{115}
Take the square root of both sides of the equation.
-x+1-1=\frac{\sqrt{18906}}{115}-1 -x+1-1=-\frac{\sqrt{18906}}{115}-1
Subtract 1 from both sides of the equation.
-x=\frac{\sqrt{18906}}{115}-1 -x=-\frac{\sqrt{18906}}{115}-1
Subtracting 1 from itself leaves 0.
-x=\frac{\sqrt{18906}}{115}-1
Subtract 1 from \frac{\sqrt{18906}}{115}.
-x=-\frac{\sqrt{18906}}{115}-1
Subtract 1 from -\frac{\sqrt{18906}}{115}.
\frac{-x}{-1}=\frac{\frac{\sqrt{18906}}{115}-1}{-1} \frac{-x}{-1}=\frac{-\frac{\sqrt{18906}}{115}-1}{-1}
Divide both sides by -1.
x=\frac{\frac{\sqrt{18906}}{115}-1}{-1} x=\frac{-\frac{\sqrt{18906}}{115}-1}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-\frac{\sqrt{18906}}{115}+1
Divide \frac{\sqrt{18906}}{115}-1 by -1.
x=\frac{\sqrt{18906}}{115}+1
Divide -\frac{\sqrt{18906}}{115}-1 by -1.
x=-\frac{\sqrt{18906}}{115}+1 x=\frac{\sqrt{18906}}{115}+1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}