Evaluate
\frac{284122553}{17}\approx 16713091.352941176
Factor
\frac{11 \cdot 13 \cdot 1986871}{17} = 16713091\frac{6}{17} = 16713091.352941176
Share
Copied to clipboard
\begin{array}{l}\phantom{34)}\phantom{1}\\34\overline{)568245106}\\\end{array}
Use the 1^{st} digit 5 from dividend 568245106
\begin{array}{l}\phantom{34)}0\phantom{2}\\34\overline{)568245106}\\\end{array}
Since 5 is less than 34, use the next digit 6 from dividend 568245106 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0\phantom{3}\\34\overline{)568245106}\\\end{array}
Use the 2^{nd} digit 6 from dividend 568245106
\begin{array}{l}\phantom{34)}01\phantom{4}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}22\\\end{array}
Find closest multiple of 34 to 56. We see that 1 \times 34 = 34 is the nearest. Now subtract 34 from 56 to get reminder 22. Add 1 to quotient.
\begin{array}{l}\phantom{34)}01\phantom{5}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\end{array}
Use the 3^{rd} digit 8 from dividend 568245106
\begin{array}{l}\phantom{34)}016\phantom{6}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}24\\\end{array}
Find closest multiple of 34 to 228. We see that 6 \times 34 = 204 is the nearest. Now subtract 204 from 228 to get reminder 24. Add 6 to quotient.
\begin{array}{l}\phantom{34)}016\phantom{7}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\end{array}
Use the 4^{th} digit 2 from dividend 568245106
\begin{array}{l}\phantom{34)}0167\phantom{8}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}4\\\end{array}
Find closest multiple of 34 to 242. We see that 7 \times 34 = 238 is the nearest. Now subtract 238 from 242 to get reminder 4. Add 7 to quotient.
\begin{array}{l}\phantom{34)}0167\phantom{9}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\end{array}
Use the 5^{th} digit 4 from dividend 568245106
\begin{array}{l}\phantom{34)}01671\phantom{10}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}10\\\end{array}
Find closest multiple of 34 to 44. We see that 1 \times 34 = 34 is the nearest. Now subtract 34 from 44 to get reminder 10. Add 1 to quotient.
\begin{array}{l}\phantom{34)}01671\phantom{11}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\end{array}
Use the 6^{th} digit 5 from dividend 568245106
\begin{array}{l}\phantom{34)}016713\phantom{12}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}3\\\end{array}
Find closest multiple of 34 to 105. We see that 3 \times 34 = 102 is the nearest. Now subtract 102 from 105 to get reminder 3. Add 3 to quotient.
\begin{array}{l}\phantom{34)}016713\phantom{13}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}31\\\end{array}
Use the 7^{th} digit 1 from dividend 568245106
\begin{array}{l}\phantom{34)}0167130\phantom{14}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}31\\\end{array}
Since 31 is less than 34, use the next digit 0 from dividend 568245106 and add 0 to the quotient
\begin{array}{l}\phantom{34)}0167130\phantom{15}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}310\\\end{array}
Use the 8^{th} digit 0 from dividend 568245106
\begin{array}{l}\phantom{34)}01671309\phantom{16}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}310\\\phantom{34)}\underline{\phantom{99999}306\phantom{9}}\\\phantom{34)9999999}4\\\end{array}
Find closest multiple of 34 to 310. We see that 9 \times 34 = 306 is the nearest. Now subtract 306 from 310 to get reminder 4. Add 9 to quotient.
\begin{array}{l}\phantom{34)}01671309\phantom{17}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}310\\\phantom{34)}\underline{\phantom{99999}306\phantom{9}}\\\phantom{34)9999999}46\\\end{array}
Use the 9^{th} digit 6 from dividend 568245106
\begin{array}{l}\phantom{34)}016713091\phantom{18}\\34\overline{)568245106}\\\phantom{34)}\underline{\phantom{}34\phantom{9999999}}\\\phantom{34)}228\\\phantom{34)}\underline{\phantom{}204\phantom{999999}}\\\phantom{34)9}242\\\phantom{34)}\underline{\phantom{9}238\phantom{99999}}\\\phantom{34)999}44\\\phantom{34)}\underline{\phantom{999}34\phantom{9999}}\\\phantom{34)999}105\\\phantom{34)}\underline{\phantom{999}102\phantom{999}}\\\phantom{34)99999}310\\\phantom{34)}\underline{\phantom{99999}306\phantom{9}}\\\phantom{34)9999999}46\\\phantom{34)}\underline{\phantom{9999999}34\phantom{}}\\\phantom{34)9999999}12\\\end{array}
Find closest multiple of 34 to 46. We see that 1 \times 34 = 34 is the nearest. Now subtract 34 from 46 to get reminder 12. Add 1 to quotient.
\text{Quotient: }16713091 \text{Reminder: }12
Since 12 is less than 34, stop the division. The reminder is 12. The topmost line 016713091 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16713091.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}