Evaluate
\frac{5657670}{7679}\approx 736.771715067
Factor
\frac{2 \cdot 3 ^ {2} \cdot 5 \cdot 37 \cdot 1699}{7 \cdot 1097} = 736\frac{5926}{7679} = 736.771715067066
Share
Copied to clipboard
\begin{array}{l}\phantom{7679)}\phantom{1}\\7679\overline{)5657670}\\\end{array}
Use the 1^{st} digit 5 from dividend 5657670
\begin{array}{l}\phantom{7679)}0\phantom{2}\\7679\overline{)5657670}\\\end{array}
Since 5 is less than 7679, use the next digit 6 from dividend 5657670 and add 0 to the quotient
\begin{array}{l}\phantom{7679)}0\phantom{3}\\7679\overline{)5657670}\\\end{array}
Use the 2^{nd} digit 6 from dividend 5657670
\begin{array}{l}\phantom{7679)}00\phantom{4}\\7679\overline{)5657670}\\\end{array}
Since 56 is less than 7679, use the next digit 5 from dividend 5657670 and add 0 to the quotient
\begin{array}{l}\phantom{7679)}00\phantom{5}\\7679\overline{)5657670}\\\end{array}
Use the 3^{rd} digit 5 from dividend 5657670
\begin{array}{l}\phantom{7679)}000\phantom{6}\\7679\overline{)5657670}\\\end{array}
Since 565 is less than 7679, use the next digit 7 from dividend 5657670 and add 0 to the quotient
\begin{array}{l}\phantom{7679)}000\phantom{7}\\7679\overline{)5657670}\\\end{array}
Use the 4^{th} digit 7 from dividend 5657670
\begin{array}{l}\phantom{7679)}0000\phantom{8}\\7679\overline{)5657670}\\\end{array}
Since 5657 is less than 7679, use the next digit 6 from dividend 5657670 and add 0 to the quotient
\begin{array}{l}\phantom{7679)}0000\phantom{9}\\7679\overline{)5657670}\\\end{array}
Use the 5^{th} digit 6 from dividend 5657670
\begin{array}{l}\phantom{7679)}00007\phantom{10}\\7679\overline{)5657670}\\\phantom{7679)}\underline{\phantom{}53753\phantom{99}}\\\phantom{7679)9}2823\\\end{array}
Find closest multiple of 7679 to 56576. We see that 7 \times 7679 = 53753 is the nearest. Now subtract 53753 from 56576 to get reminder 2823. Add 7 to quotient.
\begin{array}{l}\phantom{7679)}00007\phantom{11}\\7679\overline{)5657670}\\\phantom{7679)}\underline{\phantom{}53753\phantom{99}}\\\phantom{7679)9}28237\\\end{array}
Use the 6^{th} digit 7 from dividend 5657670
\begin{array}{l}\phantom{7679)}000073\phantom{12}\\7679\overline{)5657670}\\\phantom{7679)}\underline{\phantom{}53753\phantom{99}}\\\phantom{7679)9}28237\\\phantom{7679)}\underline{\phantom{9}23037\phantom{9}}\\\phantom{7679)99}5200\\\end{array}
Find closest multiple of 7679 to 28237. We see that 3 \times 7679 = 23037 is the nearest. Now subtract 23037 from 28237 to get reminder 5200. Add 3 to quotient.
\begin{array}{l}\phantom{7679)}000073\phantom{13}\\7679\overline{)5657670}\\\phantom{7679)}\underline{\phantom{}53753\phantom{99}}\\\phantom{7679)9}28237\\\phantom{7679)}\underline{\phantom{9}23037\phantom{9}}\\\phantom{7679)99}52000\\\end{array}
Use the 7^{th} digit 0 from dividend 5657670
\begin{array}{l}\phantom{7679)}0000736\phantom{14}\\7679\overline{)5657670}\\\phantom{7679)}\underline{\phantom{}53753\phantom{99}}\\\phantom{7679)9}28237\\\phantom{7679)}\underline{\phantom{9}23037\phantom{9}}\\\phantom{7679)99}52000\\\phantom{7679)}\underline{\phantom{99}46074\phantom{}}\\\phantom{7679)999}5926\\\end{array}
Find closest multiple of 7679 to 52000. We see that 6 \times 7679 = 46074 is the nearest. Now subtract 46074 from 52000 to get reminder 5926. Add 6 to quotient.
\text{Quotient: }736 \text{Reminder: }5926
Since 5926 is less than 7679, stop the division. The reminder is 5926. The topmost line 0000736 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 736.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}