Evaluate
35
Factor
5\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{16)}\phantom{1}\\16\overline{)560}\\\end{array}
Use the 1^{st} digit 5 from dividend 560
\begin{array}{l}\phantom{16)}0\phantom{2}\\16\overline{)560}\\\end{array}
Since 5 is less than 16, use the next digit 6 from dividend 560 and add 0 to the quotient
\begin{array}{l}\phantom{16)}0\phantom{3}\\16\overline{)560}\\\end{array}
Use the 2^{nd} digit 6 from dividend 560
\begin{array}{l}\phantom{16)}03\phantom{4}\\16\overline{)560}\\\phantom{16)}\underline{\phantom{}48\phantom{9}}\\\phantom{16)9}8\\\end{array}
Find closest multiple of 16 to 56. We see that 3 \times 16 = 48 is the nearest. Now subtract 48 from 56 to get reminder 8. Add 3 to quotient.
\begin{array}{l}\phantom{16)}03\phantom{5}\\16\overline{)560}\\\phantom{16)}\underline{\phantom{}48\phantom{9}}\\\phantom{16)9}80\\\end{array}
Use the 3^{rd} digit 0 from dividend 560
\begin{array}{l}\phantom{16)}035\phantom{6}\\16\overline{)560}\\\phantom{16)}\underline{\phantom{}48\phantom{9}}\\\phantom{16)9}80\\\phantom{16)}\underline{\phantom{9}80\phantom{}}\\\phantom{16)999}0\\\end{array}
Find closest multiple of 16 to 80. We see that 5 \times 16 = 80 is the nearest. Now subtract 80 from 80 to get reminder 0. Add 5 to quotient.
\text{Quotient: }35 \text{Reminder: }0
Since 0 is less than 16, stop the division. The reminder is 0. The topmost line 035 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}