Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

56y^{2}=182
Add 182 to both sides. Anything plus zero gives itself.
y^{2}=\frac{182}{56}
Divide both sides by 56.
y^{2}=\frac{13}{4}
Reduce the fraction \frac{182}{56} to lowest terms by extracting and canceling out 14.
y=\frac{\sqrt{13}}{2} y=-\frac{\sqrt{13}}{2}
Take the square root of both sides of the equation.
56y^{2}-182=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 56\left(-182\right)}}{2\times 56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56 for a, 0 for b, and -182 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 56\left(-182\right)}}{2\times 56}
Square 0.
y=\frac{0±\sqrt{-224\left(-182\right)}}{2\times 56}
Multiply -4 times 56.
y=\frac{0±\sqrt{40768}}{2\times 56}
Multiply -224 times -182.
y=\frac{0±56\sqrt{13}}{2\times 56}
Take the square root of 40768.
y=\frac{0±56\sqrt{13}}{112}
Multiply 2 times 56.
y=\frac{\sqrt{13}}{2}
Now solve the equation y=\frac{0±56\sqrt{13}}{112} when ± is plus.
y=-\frac{\sqrt{13}}{2}
Now solve the equation y=\frac{0±56\sqrt{13}}{112} when ± is minus.
y=\frac{\sqrt{13}}{2} y=-\frac{\sqrt{13}}{2}
The equation is now solved.