Factor
\left(7x-2\right)\left(8x+1\right)
Evaluate
\left(7x-2\right)\left(8x+1\right)
Graph
Share
Copied to clipboard
a+b=-9 ab=56\left(-2\right)=-112
Factor the expression by grouping. First, the expression needs to be rewritten as 56x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,-112 2,-56 4,-28 7,-16 8,-14
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -112.
1-112=-111 2-56=-54 4-28=-24 7-16=-9 8-14=-6
Calculate the sum for each pair.
a=-16 b=7
The solution is the pair that gives sum -9.
\left(56x^{2}-16x\right)+\left(7x-2\right)
Rewrite 56x^{2}-9x-2 as \left(56x^{2}-16x\right)+\left(7x-2\right).
8x\left(7x-2\right)+7x-2
Factor out 8x in 56x^{2}-16x.
\left(7x-2\right)\left(8x+1\right)
Factor out common term 7x-2 by using distributive property.
56x^{2}-9x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 56\left(-2\right)}}{2\times 56}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 56\left(-2\right)}}{2\times 56}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81-224\left(-2\right)}}{2\times 56}
Multiply -4 times 56.
x=\frac{-\left(-9\right)±\sqrt{81+448}}{2\times 56}
Multiply -224 times -2.
x=\frac{-\left(-9\right)±\sqrt{529}}{2\times 56}
Add 81 to 448.
x=\frac{-\left(-9\right)±23}{2\times 56}
Take the square root of 529.
x=\frac{9±23}{2\times 56}
The opposite of -9 is 9.
x=\frac{9±23}{112}
Multiply 2 times 56.
x=\frac{32}{112}
Now solve the equation x=\frac{9±23}{112} when ± is plus. Add 9 to 23.
x=\frac{2}{7}
Reduce the fraction \frac{32}{112} to lowest terms by extracting and canceling out 16.
x=-\frac{14}{112}
Now solve the equation x=\frac{9±23}{112} when ± is minus. Subtract 23 from 9.
x=-\frac{1}{8}
Reduce the fraction \frac{-14}{112} to lowest terms by extracting and canceling out 14.
56x^{2}-9x-2=56\left(x-\frac{2}{7}\right)\left(x-\left(-\frac{1}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{7} for x_{1} and -\frac{1}{8} for x_{2}.
56x^{2}-9x-2=56\left(x-\frac{2}{7}\right)\left(x+\frac{1}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
56x^{2}-9x-2=56\times \frac{7x-2}{7}\left(x+\frac{1}{8}\right)
Subtract \frac{2}{7} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
56x^{2}-9x-2=56\times \frac{7x-2}{7}\times \frac{8x+1}{8}
Add \frac{1}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
56x^{2}-9x-2=56\times \frac{\left(7x-2\right)\left(8x+1\right)}{7\times 8}
Multiply \frac{7x-2}{7} times \frac{8x+1}{8} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
56x^{2}-9x-2=56\times \frac{\left(7x-2\right)\left(8x+1\right)}{56}
Multiply 7 times 8.
56x^{2}-9x-2=\left(7x-2\right)\left(8x+1\right)
Cancel out 56, the greatest common factor in 56 and 56.
x ^ 2 -\frac{9}{56}x -\frac{1}{28} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 56
r + s = \frac{9}{56} rs = -\frac{1}{28}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{9}{112} - u s = \frac{9}{112} + u
Two numbers r and s sum up to \frac{9}{56} exactly when the average of the two numbers is \frac{1}{2}*\frac{9}{56} = \frac{9}{112}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{9}{112} - u) (\frac{9}{112} + u) = -\frac{1}{28}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{28}
\frac{81}{12544} - u^2 = -\frac{1}{28}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{28}-\frac{81}{12544} = -\frac{529}{12544}
Simplify the expression by subtracting \frac{81}{12544} on both sides
u^2 = \frac{529}{12544} u = \pm\sqrt{\frac{529}{12544}} = \pm \frac{23}{112}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{9}{112} - \frac{23}{112} = -0.125 s = \frac{9}{112} + \frac{23}{112} = 0.286
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}