Solve for x (complex solution)
x=\frac{19+\sqrt{367}i}{56}\approx 0.339285714+0.342093644i
x=\frac{-\sqrt{367}i+19}{56}\approx 0.339285714-0.342093644i
Graph
Share
Copied to clipboard
56x^{2}-38x+13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\times 56\times 13}}{2\times 56}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 56 for a, -38 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38\right)±\sqrt{1444-4\times 56\times 13}}{2\times 56}
Square -38.
x=\frac{-\left(-38\right)±\sqrt{1444-224\times 13}}{2\times 56}
Multiply -4 times 56.
x=\frac{-\left(-38\right)±\sqrt{1444-2912}}{2\times 56}
Multiply -224 times 13.
x=\frac{-\left(-38\right)±\sqrt{-1468}}{2\times 56}
Add 1444 to -2912.
x=\frac{-\left(-38\right)±2\sqrt{367}i}{2\times 56}
Take the square root of -1468.
x=\frac{38±2\sqrt{367}i}{2\times 56}
The opposite of -38 is 38.
x=\frac{38±2\sqrt{367}i}{112}
Multiply 2 times 56.
x=\frac{38+2\sqrt{367}i}{112}
Now solve the equation x=\frac{38±2\sqrt{367}i}{112} when ± is plus. Add 38 to 2i\sqrt{367}.
x=\frac{19+\sqrt{367}i}{56}
Divide 38+2i\sqrt{367} by 112.
x=\frac{-2\sqrt{367}i+38}{112}
Now solve the equation x=\frac{38±2\sqrt{367}i}{112} when ± is minus. Subtract 2i\sqrt{367} from 38.
x=\frac{-\sqrt{367}i+19}{56}
Divide 38-2i\sqrt{367} by 112.
x=\frac{19+\sqrt{367}i}{56} x=\frac{-\sqrt{367}i+19}{56}
The equation is now solved.
56x^{2}-38x+13=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
56x^{2}-38x+13-13=-13
Subtract 13 from both sides of the equation.
56x^{2}-38x=-13
Subtracting 13 from itself leaves 0.
\frac{56x^{2}-38x}{56}=-\frac{13}{56}
Divide both sides by 56.
x^{2}+\left(-\frac{38}{56}\right)x=-\frac{13}{56}
Dividing by 56 undoes the multiplication by 56.
x^{2}-\frac{19}{28}x=-\frac{13}{56}
Reduce the fraction \frac{-38}{56} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{19}{28}x+\left(-\frac{19}{56}\right)^{2}=-\frac{13}{56}+\left(-\frac{19}{56}\right)^{2}
Divide -\frac{19}{28}, the coefficient of the x term, by 2 to get -\frac{19}{56}. Then add the square of -\frac{19}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=-\frac{13}{56}+\frac{361}{3136}
Square -\frac{19}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=-\frac{367}{3136}
Add -\frac{13}{56} to \frac{361}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{56}\right)^{2}=-\frac{367}{3136}
Factor x^{2}-\frac{19}{28}x+\frac{361}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{56}\right)^{2}}=\sqrt{-\frac{367}{3136}}
Take the square root of both sides of the equation.
x-\frac{19}{56}=\frac{\sqrt{367}i}{56} x-\frac{19}{56}=-\frac{\sqrt{367}i}{56}
Simplify.
x=\frac{19+\sqrt{367}i}{56} x=\frac{-\sqrt{367}i+19}{56}
Add \frac{19}{56} to both sides of the equation.
x ^ 2 -\frac{19}{28}x +\frac{13}{56} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 56
r + s = \frac{19}{28} rs = \frac{13}{56}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{19}{56} - u s = \frac{19}{56} + u
Two numbers r and s sum up to \frac{19}{28} exactly when the average of the two numbers is \frac{1}{2}*\frac{19}{28} = \frac{19}{56}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{19}{56} - u) (\frac{19}{56} + u) = \frac{13}{56}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{13}{56}
\frac{361}{3136} - u^2 = \frac{13}{56}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{13}{56}-\frac{361}{3136} = \frac{367}{3136}
Simplify the expression by subtracting \frac{361}{3136} on both sides
u^2 = -\frac{367}{3136} u = \pm\sqrt{-\frac{367}{3136}} = \pm \frac{\sqrt{367}}{56}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{19}{56} - \frac{\sqrt{367}}{56}i = 0.339 - 0.342i s = \frac{19}{56} + \frac{\sqrt{367}}{56}i = 0.339 + 0.342i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}