Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}=-56
Subtract 56 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-56}{-4}
Divide both sides by -4.
x^{2}=14
Divide -56 by -4 to get 14.
x=\sqrt{14} x=-\sqrt{14}
Take the square root of both sides of the equation.
-4x^{2}+56=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 56}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 0 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)\times 56}}{2\left(-4\right)}
Square 0.
x=\frac{0±\sqrt{16\times 56}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{0±\sqrt{896}}{2\left(-4\right)}
Multiply 16 times 56.
x=\frac{0±8\sqrt{14}}{2\left(-4\right)}
Take the square root of 896.
x=\frac{0±8\sqrt{14}}{-8}
Multiply 2 times -4.
x=-\sqrt{14}
Now solve the equation x=\frac{0±8\sqrt{14}}{-8} when ± is plus.
x=\sqrt{14}
Now solve the equation x=\frac{0±8\sqrt{14}}{-8} when ± is minus.
x=-\sqrt{14} x=\sqrt{14}
The equation is now solved.