Factor
\left(28x-17\right)\left(2x+1\right)
Evaluate
\left(28x-17\right)\left(2x+1\right)
Graph
Share
Copied to clipboard
a+b=-6 ab=56\left(-17\right)=-952
Factor the expression by grouping. First, the expression needs to be rewritten as 56x^{2}+ax+bx-17. To find a and b, set up a system to be solved.
1,-952 2,-476 4,-238 7,-136 8,-119 14,-68 17,-56 28,-34
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -952.
1-952=-951 2-476=-474 4-238=-234 7-136=-129 8-119=-111 14-68=-54 17-56=-39 28-34=-6
Calculate the sum for each pair.
a=-34 b=28
The solution is the pair that gives sum -6.
\left(56x^{2}-34x\right)+\left(28x-17\right)
Rewrite 56x^{2}-6x-17 as \left(56x^{2}-34x\right)+\left(28x-17\right).
2x\left(28x-17\right)+28x-17
Factor out 2x in 56x^{2}-34x.
\left(28x-17\right)\left(2x+1\right)
Factor out common term 28x-17 by using distributive property.
56x^{2}-6x-17=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 56\left(-17\right)}}{2\times 56}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 56\left(-17\right)}}{2\times 56}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-224\left(-17\right)}}{2\times 56}
Multiply -4 times 56.
x=\frac{-\left(-6\right)±\sqrt{36+3808}}{2\times 56}
Multiply -224 times -17.
x=\frac{-\left(-6\right)±\sqrt{3844}}{2\times 56}
Add 36 to 3808.
x=\frac{-\left(-6\right)±62}{2\times 56}
Take the square root of 3844.
x=\frac{6±62}{2\times 56}
The opposite of -6 is 6.
x=\frac{6±62}{112}
Multiply 2 times 56.
x=\frac{68}{112}
Now solve the equation x=\frac{6±62}{112} when ± is plus. Add 6 to 62.
x=\frac{17}{28}
Reduce the fraction \frac{68}{112} to lowest terms by extracting and canceling out 4.
x=-\frac{56}{112}
Now solve the equation x=\frac{6±62}{112} when ± is minus. Subtract 62 from 6.
x=-\frac{1}{2}
Reduce the fraction \frac{-56}{112} to lowest terms by extracting and canceling out 56.
56x^{2}-6x-17=56\left(x-\frac{17}{28}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{17}{28} for x_{1} and -\frac{1}{2} for x_{2}.
56x^{2}-6x-17=56\left(x-\frac{17}{28}\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
56x^{2}-6x-17=56\times \frac{28x-17}{28}\left(x+\frac{1}{2}\right)
Subtract \frac{17}{28} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
56x^{2}-6x-17=56\times \frac{28x-17}{28}\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
56x^{2}-6x-17=56\times \frac{\left(28x-17\right)\left(2x+1\right)}{28\times 2}
Multiply \frac{28x-17}{28} times \frac{2x+1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
56x^{2}-6x-17=56\times \frac{\left(28x-17\right)\left(2x+1\right)}{56}
Multiply 28 times 2.
56x^{2}-6x-17=\left(28x-17\right)\left(2x+1\right)
Cancel out 56, the greatest common factor in 56 and 56.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}