Evaluate
\frac{7424}{321}\approx 23.127725857
Factor
\frac{2 ^ {8} \cdot 29}{3 \cdot 107} = 23\frac{41}{321} = 23.12772585669782
Share
Copied to clipboard
\frac{\frac{56}{56+51}\times 32}{\frac{3\times 56}{3\times 56+4\times 16}}
Multiply 3 and 17 to get 51.
\frac{\frac{56}{107}\times 32}{\frac{3\times 56}{3\times 56+4\times 16}}
Add 56 and 51 to get 107.
\frac{\frac{56\times 32}{107}}{\frac{3\times 56}{3\times 56+4\times 16}}
Express \frac{56}{107}\times 32 as a single fraction.
\frac{\frac{1792}{107}}{\frac{3\times 56}{3\times 56+4\times 16}}
Multiply 56 and 32 to get 1792.
\frac{\frac{1792}{107}}{\frac{168}{3\times 56+4\times 16}}
Multiply 3 and 56 to get 168.
\frac{\frac{1792}{107}}{\frac{168}{168+64}}
Multiply 3 and 56 to get 168. Multiply 4 and 16 to get 64.
\frac{\frac{1792}{107}}{\frac{168}{232}}
Add 168 and 64 to get 232.
\frac{\frac{1792}{107}}{\frac{21}{29}}
Reduce the fraction \frac{168}{232} to lowest terms by extracting and canceling out 8.
\frac{1792}{107}\times \frac{29}{21}
Divide \frac{1792}{107} by \frac{21}{29} by multiplying \frac{1792}{107} by the reciprocal of \frac{21}{29}.
\frac{1792\times 29}{107\times 21}
Multiply \frac{1792}{107} times \frac{29}{21} by multiplying numerator times numerator and denominator times denominator.
\frac{51968}{2247}
Do the multiplications in the fraction \frac{1792\times 29}{107\times 21}.
\frac{7424}{321}
Reduce the fraction \frac{51968}{2247} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}