Solve for x
x=\frac{81y}{31}
Solve for y
y=\frac{31x}{81}
Graph
Share
Copied to clipboard
55x-33y-24x=48y
Subtract 24x from both sides.
31x-33y=48y
Combine 55x and -24x to get 31x.
31x=48y+33y
Add 33y to both sides.
31x=81y
Combine 48y and 33y to get 81y.
\frac{31x}{31}=\frac{81y}{31}
Divide both sides by 31.
x=\frac{81y}{31}
Dividing by 31 undoes the multiplication by 31.
55x-33y-48y=24x
Subtract 48y from both sides.
55x-81y=24x
Combine -33y and -48y to get -81y.
-81y=24x-55x
Subtract 55x from both sides.
-81y=-31x
Combine 24x and -55x to get -31x.
\frac{-81y}{-81}=-\frac{31x}{-81}
Divide both sides by -81.
y=-\frac{31x}{-81}
Dividing by -81 undoes the multiplication by -81.
y=\frac{31x}{81}
Divide -31x by -81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}