Evaluate
\frac{559}{28}\approx 19.964285714
Factor
\frac{13 \cdot 43}{2 ^ {2} \cdot 7} = 19\frac{27}{28} = 19.964285714285715
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)559}\\\end{array}
Use the 1^{st} digit 5 from dividend 559
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)559}\\\end{array}
Since 5 is less than 28, use the next digit 5 from dividend 559 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)559}\\\end{array}
Use the 2^{nd} digit 5 from dividend 559
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)559}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}27\\\end{array}
Find closest multiple of 28 to 55. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 55 to get reminder 27. Add 1 to quotient.
\begin{array}{l}\phantom{28)}01\phantom{5}\\28\overline{)559}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}279\\\end{array}
Use the 3^{rd} digit 9 from dividend 559
\begin{array}{l}\phantom{28)}019\phantom{6}\\28\overline{)559}\\\phantom{28)}\underline{\phantom{}28\phantom{9}}\\\phantom{28)}279\\\phantom{28)}\underline{\phantom{}252\phantom{}}\\\phantom{28)9}27\\\end{array}
Find closest multiple of 28 to 279. We see that 9 \times 28 = 252 is the nearest. Now subtract 252 from 279 to get reminder 27. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }27
Since 27 is less than 28, stop the division. The reminder is 27. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}