Evaluate
\frac{5583}{145}\approx 38.503448276
Factor
\frac{3 \cdot 1861}{5 \cdot 29} = 38\frac{73}{145} = 38.50344827586207
Share
Copied to clipboard
\begin{array}{l}\phantom{145)}\phantom{1}\\145\overline{)5583}\\\end{array}
Use the 1^{st} digit 5 from dividend 5583
\begin{array}{l}\phantom{145)}0\phantom{2}\\145\overline{)5583}\\\end{array}
Since 5 is less than 145, use the next digit 5 from dividend 5583 and add 0 to the quotient
\begin{array}{l}\phantom{145)}0\phantom{3}\\145\overline{)5583}\\\end{array}
Use the 2^{nd} digit 5 from dividend 5583
\begin{array}{l}\phantom{145)}00\phantom{4}\\145\overline{)5583}\\\end{array}
Since 55 is less than 145, use the next digit 8 from dividend 5583 and add 0 to the quotient
\begin{array}{l}\phantom{145)}00\phantom{5}\\145\overline{)5583}\\\end{array}
Use the 3^{rd} digit 8 from dividend 5583
\begin{array}{l}\phantom{145)}003\phantom{6}\\145\overline{)5583}\\\phantom{145)}\underline{\phantom{}435\phantom{9}}\\\phantom{145)}123\\\end{array}
Find closest multiple of 145 to 558. We see that 3 \times 145 = 435 is the nearest. Now subtract 435 from 558 to get reminder 123. Add 3 to quotient.
\begin{array}{l}\phantom{145)}003\phantom{7}\\145\overline{)5583}\\\phantom{145)}\underline{\phantom{}435\phantom{9}}\\\phantom{145)}1233\\\end{array}
Use the 4^{th} digit 3 from dividend 5583
\begin{array}{l}\phantom{145)}0038\phantom{8}\\145\overline{)5583}\\\phantom{145)}\underline{\phantom{}435\phantom{9}}\\\phantom{145)}1233\\\phantom{145)}\underline{\phantom{}1160\phantom{}}\\\phantom{145)99}73\\\end{array}
Find closest multiple of 145 to 1233. We see that 8 \times 145 = 1160 is the nearest. Now subtract 1160 from 1233 to get reminder 73. Add 8 to quotient.
\text{Quotient: }38 \text{Reminder: }73
Since 73 is less than 145, stop the division. The reminder is 73. The topmost line 0038 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 38.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}