Evaluate
3939
Factor
3\times 13\times 101
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)55146}\\\end{array}
Use the 1^{st} digit 5 from dividend 55146
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)55146}\\\end{array}
Since 5 is less than 14, use the next digit 5 from dividend 55146 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)55146}\\\end{array}
Use the 2^{nd} digit 5 from dividend 55146
\begin{array}{l}\phantom{14)}03\phantom{4}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}13\\\end{array}
Find closest multiple of 14 to 55. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 55 to get reminder 13. Add 3 to quotient.
\begin{array}{l}\phantom{14)}03\phantom{5}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}131\\\end{array}
Use the 3^{rd} digit 1 from dividend 55146
\begin{array}{l}\phantom{14)}039\phantom{6}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}131\\\phantom{14)}\underline{\phantom{}126\phantom{99}}\\\phantom{14)99}5\\\end{array}
Find closest multiple of 14 to 131. We see that 9 \times 14 = 126 is the nearest. Now subtract 126 from 131 to get reminder 5. Add 9 to quotient.
\begin{array}{l}\phantom{14)}039\phantom{7}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}131\\\phantom{14)}\underline{\phantom{}126\phantom{99}}\\\phantom{14)99}54\\\end{array}
Use the 4^{th} digit 4 from dividend 55146
\begin{array}{l}\phantom{14)}0393\phantom{8}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}131\\\phantom{14)}\underline{\phantom{}126\phantom{99}}\\\phantom{14)99}54\\\phantom{14)}\underline{\phantom{99}42\phantom{9}}\\\phantom{14)99}12\\\end{array}
Find closest multiple of 14 to 54. We see that 3 \times 14 = 42 is the nearest. Now subtract 42 from 54 to get reminder 12. Add 3 to quotient.
\begin{array}{l}\phantom{14)}0393\phantom{9}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}131\\\phantom{14)}\underline{\phantom{}126\phantom{99}}\\\phantom{14)99}54\\\phantom{14)}\underline{\phantom{99}42\phantom{9}}\\\phantom{14)99}126\\\end{array}
Use the 5^{th} digit 6 from dividend 55146
\begin{array}{l}\phantom{14)}03939\phantom{10}\\14\overline{)55146}\\\phantom{14)}\underline{\phantom{}42\phantom{999}}\\\phantom{14)}131\\\phantom{14)}\underline{\phantom{}126\phantom{99}}\\\phantom{14)99}54\\\phantom{14)}\underline{\phantom{99}42\phantom{9}}\\\phantom{14)99}126\\\phantom{14)}\underline{\phantom{99}126\phantom{}}\\\phantom{14)99999}0\\\end{array}
Find closest multiple of 14 to 126. We see that 9 \times 14 = 126 is the nearest. Now subtract 126 from 126 to get reminder 0. Add 9 to quotient.
\text{Quotient: }3939 \text{Reminder: }0
Since 0 is less than 14, stop the division. The reminder is 0. The topmost line 03939 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3939.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}