Solve for x
x=\frac{1}{3}\approx 0.333333333
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
5508x^{2}-15606x+4590=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15606\right)±\sqrt{\left(-15606\right)^{2}-4\times 5508\times 4590}}{2\times 5508}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5508 for a, -15606 for b, and 4590 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15606\right)±\sqrt{243547236-4\times 5508\times 4590}}{2\times 5508}
Square -15606.
x=\frac{-\left(-15606\right)±\sqrt{243547236-22032\times 4590}}{2\times 5508}
Multiply -4 times 5508.
x=\frac{-\left(-15606\right)±\sqrt{243547236-101126880}}{2\times 5508}
Multiply -22032 times 4590.
x=\frac{-\left(-15606\right)±\sqrt{142420356}}{2\times 5508}
Add 243547236 to -101126880.
x=\frac{-\left(-15606\right)±11934}{2\times 5508}
Take the square root of 142420356.
x=\frac{15606±11934}{2\times 5508}
The opposite of -15606 is 15606.
x=\frac{15606±11934}{11016}
Multiply 2 times 5508.
x=\frac{27540}{11016}
Now solve the equation x=\frac{15606±11934}{11016} when ± is plus. Add 15606 to 11934.
x=\frac{5}{2}
Reduce the fraction \frac{27540}{11016} to lowest terms by extracting and canceling out 5508.
x=\frac{3672}{11016}
Now solve the equation x=\frac{15606±11934}{11016} when ± is minus. Subtract 11934 from 15606.
x=\frac{1}{3}
Reduce the fraction \frac{3672}{11016} to lowest terms by extracting and canceling out 3672.
x=\frac{5}{2} x=\frac{1}{3}
The equation is now solved.
5508x^{2}-15606x+4590=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5508x^{2}-15606x+4590-4590=-4590
Subtract 4590 from both sides of the equation.
5508x^{2}-15606x=-4590
Subtracting 4590 from itself leaves 0.
\frac{5508x^{2}-15606x}{5508}=-\frac{4590}{5508}
Divide both sides by 5508.
x^{2}+\left(-\frac{15606}{5508}\right)x=-\frac{4590}{5508}
Dividing by 5508 undoes the multiplication by 5508.
x^{2}-\frac{17}{6}x=-\frac{4590}{5508}
Reduce the fraction \frac{-15606}{5508} to lowest terms by extracting and canceling out 918.
x^{2}-\frac{17}{6}x=-\frac{5}{6}
Reduce the fraction \frac{-4590}{5508} to lowest terms by extracting and canceling out 918.
x^{2}-\frac{17}{6}x+\left(-\frac{17}{12}\right)^{2}=-\frac{5}{6}+\left(-\frac{17}{12}\right)^{2}
Divide -\frac{17}{6}, the coefficient of the x term, by 2 to get -\frac{17}{12}. Then add the square of -\frac{17}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{6}x+\frac{289}{144}=-\frac{5}{6}+\frac{289}{144}
Square -\frac{17}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{6}x+\frac{289}{144}=\frac{169}{144}
Add -\frac{5}{6} to \frac{289}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{12}\right)^{2}=\frac{169}{144}
Factor x^{2}-\frac{17}{6}x+\frac{289}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Take the square root of both sides of the equation.
x-\frac{17}{12}=\frac{13}{12} x-\frac{17}{12}=-\frac{13}{12}
Simplify.
x=\frac{5}{2} x=\frac{1}{3}
Add \frac{17}{12} to both sides of the equation.
x ^ 2 -\frac{17}{6}x +\frac{5}{6} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5508
r + s = \frac{17}{6} rs = \frac{5}{6}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{12} - u s = \frac{17}{12} + u
Two numbers r and s sum up to \frac{17}{6} exactly when the average of the two numbers is \frac{1}{2}*\frac{17}{6} = \frac{17}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{12} - u) (\frac{17}{12} + u) = \frac{5}{6}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{6}
\frac{289}{144} - u^2 = \frac{5}{6}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{6}-\frac{289}{144} = -\frac{169}{144}
Simplify the expression by subtracting \frac{289}{144} on both sides
u^2 = \frac{169}{144} u = \pm\sqrt{\frac{169}{144}} = \pm \frac{13}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{12} - \frac{13}{12} = 0.333 s = \frac{17}{12} + \frac{13}{12} = 2.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}