Evaluate
\frac{275}{6}\approx 45.833333333
Factor
\frac{5 ^ {2} \cdot 11}{2 \cdot 3} = 45\frac{5}{6} = 45.833333333333336
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)550}\\\end{array}
Use the 1^{st} digit 5 from dividend 550
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)550}\\\end{array}
Since 5 is less than 12, use the next digit 5 from dividend 550 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)550}\\\end{array}
Use the 2^{nd} digit 5 from dividend 550
\begin{array}{l}\phantom{12)}04\phantom{4}\\12\overline{)550}\\\phantom{12)}\underline{\phantom{}48\phantom{9}}\\\phantom{12)9}7\\\end{array}
Find closest multiple of 12 to 55. We see that 4 \times 12 = 48 is the nearest. Now subtract 48 from 55 to get reminder 7. Add 4 to quotient.
\begin{array}{l}\phantom{12)}04\phantom{5}\\12\overline{)550}\\\phantom{12)}\underline{\phantom{}48\phantom{9}}\\\phantom{12)9}70\\\end{array}
Use the 3^{rd} digit 0 from dividend 550
\begin{array}{l}\phantom{12)}045\phantom{6}\\12\overline{)550}\\\phantom{12)}\underline{\phantom{}48\phantom{9}}\\\phantom{12)9}70\\\phantom{12)}\underline{\phantom{9}60\phantom{}}\\\phantom{12)9}10\\\end{array}
Find closest multiple of 12 to 70. We see that 5 \times 12 = 60 is the nearest. Now subtract 60 from 70 to get reminder 10. Add 5 to quotient.
\text{Quotient: }45 \text{Reminder: }10
Since 10 is less than 12, stop the division. The reminder is 10. The topmost line 045 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}