Evaluate
53.75
Factor
\frac{5 \cdot 43}{2 ^ {2}} = 53\frac{3}{4} = 53.75
Share
Copied to clipboard
55.1-\left(2.25-\frac{2.88}{3.2}\right)
Multiply 2.5 and 0.9 to get 2.25.
55.1-\left(2.25-\frac{288}{320}\right)
Expand \frac{2.88}{3.2} by multiplying both numerator and the denominator by 100.
55.1-\left(2.25-\frac{9}{10}\right)
Reduce the fraction \frac{288}{320} to lowest terms by extracting and canceling out 32.
55.1-\left(\frac{9}{4}-\frac{9}{10}\right)
Convert decimal number 2.25 to fraction \frac{225}{100}. Reduce the fraction \frac{225}{100} to lowest terms by extracting and canceling out 25.
55.1-\left(\frac{45}{20}-\frac{18}{20}\right)
Least common multiple of 4 and 10 is 20. Convert \frac{9}{4} and \frac{9}{10} to fractions with denominator 20.
55.1-\frac{45-18}{20}
Since \frac{45}{20} and \frac{18}{20} have the same denominator, subtract them by subtracting their numerators.
55.1-\frac{27}{20}
Subtract 18 from 45 to get 27.
\frac{551}{10}-\frac{27}{20}
Convert decimal number 55.1 to fraction \frac{551}{10}.
\frac{1102}{20}-\frac{27}{20}
Least common multiple of 10 and 20 is 20. Convert \frac{551}{10} and \frac{27}{20} to fractions with denominator 20.
\frac{1102-27}{20}
Since \frac{1102}{20} and \frac{27}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{1075}{20}
Subtract 27 from 1102 to get 1075.
\frac{215}{4}
Reduce the fraction \frac{1075}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}