Solve for x
x = \frac{2 \sqrt{1285} - 60}{11} \approx 1.06307212
x=\frac{-2\sqrt{1285}-60}{11}\approx -11.972163029
Graph
Share
Copied to clipboard
55xx=700+x\left(-600\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
55x^{2}=700+x\left(-600\right)
Multiply x and x to get x^{2}.
55x^{2}-700=x\left(-600\right)
Subtract 700 from both sides.
55x^{2}-700-x\left(-600\right)=0
Subtract x\left(-600\right) from both sides.
55x^{2}-700+600x=0
Multiply -1 and -600 to get 600.
55x^{2}+600x-700=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-600±\sqrt{600^{2}-4\times 55\left(-700\right)}}{2\times 55}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 55 for a, 600 for b, and -700 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-600±\sqrt{360000-4\times 55\left(-700\right)}}{2\times 55}
Square 600.
x=\frac{-600±\sqrt{360000-220\left(-700\right)}}{2\times 55}
Multiply -4 times 55.
x=\frac{-600±\sqrt{360000+154000}}{2\times 55}
Multiply -220 times -700.
x=\frac{-600±\sqrt{514000}}{2\times 55}
Add 360000 to 154000.
x=\frac{-600±20\sqrt{1285}}{2\times 55}
Take the square root of 514000.
x=\frac{-600±20\sqrt{1285}}{110}
Multiply 2 times 55.
x=\frac{20\sqrt{1285}-600}{110}
Now solve the equation x=\frac{-600±20\sqrt{1285}}{110} when ± is plus. Add -600 to 20\sqrt{1285}.
x=\frac{2\sqrt{1285}-60}{11}
Divide -600+20\sqrt{1285} by 110.
x=\frac{-20\sqrt{1285}-600}{110}
Now solve the equation x=\frac{-600±20\sqrt{1285}}{110} when ± is minus. Subtract 20\sqrt{1285} from -600.
x=\frac{-2\sqrt{1285}-60}{11}
Divide -600-20\sqrt{1285} by 110.
x=\frac{2\sqrt{1285}-60}{11} x=\frac{-2\sqrt{1285}-60}{11}
The equation is now solved.
55xx=700+x\left(-600\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
55x^{2}=700+x\left(-600\right)
Multiply x and x to get x^{2}.
55x^{2}-x\left(-600\right)=700
Subtract x\left(-600\right) from both sides.
55x^{2}+600x=700
Multiply -1 and -600 to get 600.
\frac{55x^{2}+600x}{55}=\frac{700}{55}
Divide both sides by 55.
x^{2}+\frac{600}{55}x=\frac{700}{55}
Dividing by 55 undoes the multiplication by 55.
x^{2}+\frac{120}{11}x=\frac{700}{55}
Reduce the fraction \frac{600}{55} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{120}{11}x=\frac{140}{11}
Reduce the fraction \frac{700}{55} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{120}{11}x+\left(\frac{60}{11}\right)^{2}=\frac{140}{11}+\left(\frac{60}{11}\right)^{2}
Divide \frac{120}{11}, the coefficient of the x term, by 2 to get \frac{60}{11}. Then add the square of \frac{60}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{120}{11}x+\frac{3600}{121}=\frac{140}{11}+\frac{3600}{121}
Square \frac{60}{11} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{120}{11}x+\frac{3600}{121}=\frac{5140}{121}
Add \frac{140}{11} to \frac{3600}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{60}{11}\right)^{2}=\frac{5140}{121}
Factor x^{2}+\frac{120}{11}x+\frac{3600}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{60}{11}\right)^{2}}=\sqrt{\frac{5140}{121}}
Take the square root of both sides of the equation.
x+\frac{60}{11}=\frac{2\sqrt{1285}}{11} x+\frac{60}{11}=-\frac{2\sqrt{1285}}{11}
Simplify.
x=\frac{2\sqrt{1285}-60}{11} x=\frac{-2\sqrt{1285}-60}{11}
Subtract \frac{60}{11} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}