Solve for k
k=\frac{5m}{3}-17
Solve for m
m=\frac{3\left(k+17\right)}{5}
Share
Copied to clipboard
3k=4+5m-55
Subtract 55 from both sides.
3k=-51+5m
Subtract 55 from 4 to get -51.
3k=5m-51
The equation is in standard form.
\frac{3k}{3}=\frac{5m-51}{3}
Divide both sides by 3.
k=\frac{5m-51}{3}
Dividing by 3 undoes the multiplication by 3.
k=\frac{5m}{3}-17
Divide -51+5m by 3.
4+5m=55+3k
Swap sides so that all variable terms are on the left hand side.
5m=55+3k-4
Subtract 4 from both sides.
5m=51+3k
Subtract 4 from 55 to get 51.
5m=3k+51
The equation is in standard form.
\frac{5m}{5}=\frac{3k+51}{5}
Divide both sides by 5.
m=\frac{3k+51}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}