Evaluate
\frac{10922}{9}\approx 1213.555555556
Factor
\frac{2 \cdot 43 \cdot 127}{3 ^ {2}} = 1213\frac{5}{9} = 1213.5555555555557
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)54610}\\\end{array}
Use the 1^{st} digit 5 from dividend 54610
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)54610}\\\end{array}
Since 5 is less than 45, use the next digit 4 from dividend 54610 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)54610}\\\end{array}
Use the 2^{nd} digit 4 from dividend 54610
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}9\\\end{array}
Find closest multiple of 45 to 54. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 54 to get reminder 9. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}96\\\end{array}
Use the 3^{rd} digit 6 from dividend 54610
\begin{array}{l}\phantom{45)}012\phantom{6}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}96\\\phantom{45)}\underline{\phantom{9}90\phantom{99}}\\\phantom{45)99}6\\\end{array}
Find closest multiple of 45 to 96. We see that 2 \times 45 = 90 is the nearest. Now subtract 90 from 96 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{45)}012\phantom{7}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}96\\\phantom{45)}\underline{\phantom{9}90\phantom{99}}\\\phantom{45)99}61\\\end{array}
Use the 4^{th} digit 1 from dividend 54610
\begin{array}{l}\phantom{45)}0121\phantom{8}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}96\\\phantom{45)}\underline{\phantom{9}90\phantom{99}}\\\phantom{45)99}61\\\phantom{45)}\underline{\phantom{99}45\phantom{9}}\\\phantom{45)99}16\\\end{array}
Find closest multiple of 45 to 61. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 61 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{45)}0121\phantom{9}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}96\\\phantom{45)}\underline{\phantom{9}90\phantom{99}}\\\phantom{45)99}61\\\phantom{45)}\underline{\phantom{99}45\phantom{9}}\\\phantom{45)99}160\\\end{array}
Use the 5^{th} digit 0 from dividend 54610
\begin{array}{l}\phantom{45)}01213\phantom{10}\\45\overline{)54610}\\\phantom{45)}\underline{\phantom{}45\phantom{999}}\\\phantom{45)9}96\\\phantom{45)}\underline{\phantom{9}90\phantom{99}}\\\phantom{45)99}61\\\phantom{45)}\underline{\phantom{99}45\phantom{9}}\\\phantom{45)99}160\\\phantom{45)}\underline{\phantom{99}135\phantom{}}\\\phantom{45)999}25\\\end{array}
Find closest multiple of 45 to 160. We see that 3 \times 45 = 135 is the nearest. Now subtract 135 from 160 to get reminder 25. Add 3 to quotient.
\text{Quotient: }1213 \text{Reminder: }25
Since 25 is less than 45, stop the division. The reminder is 25. The topmost line 01213 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1213.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}