Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

546x^{2}-554x+1621=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-554\right)±\sqrt{\left(-554\right)^{2}-4\times 546\times 1621}}{2\times 546}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 546 for a, -554 for b, and 1621 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-554\right)±\sqrt{306916-4\times 546\times 1621}}{2\times 546}
Square -554.
x=\frac{-\left(-554\right)±\sqrt{306916-2184\times 1621}}{2\times 546}
Multiply -4 times 546.
x=\frac{-\left(-554\right)±\sqrt{306916-3540264}}{2\times 546}
Multiply -2184 times 1621.
x=\frac{-\left(-554\right)±\sqrt{-3233348}}{2\times 546}
Add 306916 to -3540264.
x=\frac{-\left(-554\right)±2\sqrt{808337}i}{2\times 546}
Take the square root of -3233348.
x=\frac{554±2\sqrt{808337}i}{2\times 546}
The opposite of -554 is 554.
x=\frac{554±2\sqrt{808337}i}{1092}
Multiply 2 times 546.
x=\frac{554+2\sqrt{808337}i}{1092}
Now solve the equation x=\frac{554±2\sqrt{808337}i}{1092} when ± is plus. Add 554 to 2i\sqrt{808337}.
x=\frac{277+\sqrt{808337}i}{546}
Divide 554+2i\sqrt{808337} by 1092.
x=\frac{-2\sqrt{808337}i+554}{1092}
Now solve the equation x=\frac{554±2\sqrt{808337}i}{1092} when ± is minus. Subtract 2i\sqrt{808337} from 554.
x=\frac{-\sqrt{808337}i+277}{546}
Divide 554-2i\sqrt{808337} by 1092.
x=\frac{277+\sqrt{808337}i}{546} x=\frac{-\sqrt{808337}i+277}{546}
The equation is now solved.
546x^{2}-554x+1621=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
546x^{2}-554x+1621-1621=-1621
Subtract 1621 from both sides of the equation.
546x^{2}-554x=-1621
Subtracting 1621 from itself leaves 0.
\frac{546x^{2}-554x}{546}=-\frac{1621}{546}
Divide both sides by 546.
x^{2}+\left(-\frac{554}{546}\right)x=-\frac{1621}{546}
Dividing by 546 undoes the multiplication by 546.
x^{2}-\frac{277}{273}x=-\frac{1621}{546}
Reduce the fraction \frac{-554}{546} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{277}{273}x+\left(-\frac{277}{546}\right)^{2}=-\frac{1621}{546}+\left(-\frac{277}{546}\right)^{2}
Divide -\frac{277}{273}, the coefficient of the x term, by 2 to get -\frac{277}{546}. Then add the square of -\frac{277}{546} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{277}{273}x+\frac{76729}{298116}=-\frac{1621}{546}+\frac{76729}{298116}
Square -\frac{277}{546} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{277}{273}x+\frac{76729}{298116}=-\frac{808337}{298116}
Add -\frac{1621}{546} to \frac{76729}{298116} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{277}{546}\right)^{2}=-\frac{808337}{298116}
Factor x^{2}-\frac{277}{273}x+\frac{76729}{298116}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{277}{546}\right)^{2}}=\sqrt{-\frac{808337}{298116}}
Take the square root of both sides of the equation.
x-\frac{277}{546}=\frac{\sqrt{808337}i}{546} x-\frac{277}{546}=-\frac{\sqrt{808337}i}{546}
Simplify.
x=\frac{277+\sqrt{808337}i}{546} x=\frac{-\sqrt{808337}i+277}{546}
Add \frac{277}{546} to both sides of the equation.