Evaluate
\frac{545}{297}\approx 1.835016835
Factor
\frac{5 \cdot 109}{3 ^ {3} \cdot 11} = 1\frac{248}{297} = 1.835016835016835
Share
Copied to clipboard
\begin{array}{l}\phantom{297)}\phantom{1}\\297\overline{)545}\\\end{array}
Use the 1^{st} digit 5 from dividend 545
\begin{array}{l}\phantom{297)}0\phantom{2}\\297\overline{)545}\\\end{array}
Since 5 is less than 297, use the next digit 4 from dividend 545 and add 0 to the quotient
\begin{array}{l}\phantom{297)}0\phantom{3}\\297\overline{)545}\\\end{array}
Use the 2^{nd} digit 4 from dividend 545
\begin{array}{l}\phantom{297)}00\phantom{4}\\297\overline{)545}\\\end{array}
Since 54 is less than 297, use the next digit 5 from dividend 545 and add 0 to the quotient
\begin{array}{l}\phantom{297)}00\phantom{5}\\297\overline{)545}\\\end{array}
Use the 3^{rd} digit 5 from dividend 545
\begin{array}{l}\phantom{297)}001\phantom{6}\\297\overline{)545}\\\phantom{297)}\underline{\phantom{}297\phantom{}}\\\phantom{297)}248\\\end{array}
Find closest multiple of 297 to 545. We see that 1 \times 297 = 297 is the nearest. Now subtract 297 from 545 to get reminder 248. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }248
Since 248 is less than 297, stop the division. The reminder is 248. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}