Evaluate
\frac{181}{14}\approx 12.928571429
Factor
\frac{181}{2 \cdot 7} = 12\frac{13}{14} = 12.928571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)543}\\\end{array}
Use the 1^{st} digit 5 from dividend 543
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)543}\\\end{array}
Since 5 is less than 42, use the next digit 4 from dividend 543 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)543}\\\end{array}
Use the 2^{nd} digit 4 from dividend 543
\begin{array}{l}\phantom{42)}01\phantom{4}\\42\overline{)543}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}12\\\end{array}
Find closest multiple of 42 to 54. We see that 1 \times 42 = 42 is the nearest. Now subtract 42 from 54 to get reminder 12. Add 1 to quotient.
\begin{array}{l}\phantom{42)}01\phantom{5}\\42\overline{)543}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}123\\\end{array}
Use the 3^{rd} digit 3 from dividend 543
\begin{array}{l}\phantom{42)}012\phantom{6}\\42\overline{)543}\\\phantom{42)}\underline{\phantom{}42\phantom{9}}\\\phantom{42)}123\\\phantom{42)}\underline{\phantom{9}84\phantom{}}\\\phantom{42)9}39\\\end{array}
Find closest multiple of 42 to 123. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 123 to get reminder 39. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }39
Since 39 is less than 42, stop the division. The reminder is 39. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}