Evaluate
\frac{271}{19}\approx 14.263157895
Factor
\frac{271}{19} = 14\frac{5}{19} = 14.263157894736842
Share
Copied to clipboard
\begin{array}{l}\phantom{38)}\phantom{1}\\38\overline{)542}\\\end{array}
Use the 1^{st} digit 5 from dividend 542
\begin{array}{l}\phantom{38)}0\phantom{2}\\38\overline{)542}\\\end{array}
Since 5 is less than 38, use the next digit 4 from dividend 542 and add 0 to the quotient
\begin{array}{l}\phantom{38)}0\phantom{3}\\38\overline{)542}\\\end{array}
Use the 2^{nd} digit 4 from dividend 542
\begin{array}{l}\phantom{38)}01\phantom{4}\\38\overline{)542}\\\phantom{38)}\underline{\phantom{}38\phantom{9}}\\\phantom{38)}16\\\end{array}
Find closest multiple of 38 to 54. We see that 1 \times 38 = 38 is the nearest. Now subtract 38 from 54 to get reminder 16. Add 1 to quotient.
\begin{array}{l}\phantom{38)}01\phantom{5}\\38\overline{)542}\\\phantom{38)}\underline{\phantom{}38\phantom{9}}\\\phantom{38)}162\\\end{array}
Use the 3^{rd} digit 2 from dividend 542
\begin{array}{l}\phantom{38)}014\phantom{6}\\38\overline{)542}\\\phantom{38)}\underline{\phantom{}38\phantom{9}}\\\phantom{38)}162\\\phantom{38)}\underline{\phantom{}152\phantom{}}\\\phantom{38)9}10\\\end{array}
Find closest multiple of 38 to 162. We see that 4 \times 38 = 152 is the nearest. Now subtract 152 from 162 to get reminder 10. Add 4 to quotient.
\text{Quotient: }14 \text{Reminder: }10
Since 10 is less than 38, stop the division. The reminder is 10. The topmost line 014 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}