Evaluate
\frac{541}{13}\approx 41.615384615
Factor
\frac{541}{13} = 41\frac{8}{13} = 41.61538461538461
Share
Copied to clipboard
\begin{array}{l}\phantom{13)}\phantom{1}\\13\overline{)541}\\\end{array}
Use the 1^{st} digit 5 from dividend 541
\begin{array}{l}\phantom{13)}0\phantom{2}\\13\overline{)541}\\\end{array}
Since 5 is less than 13, use the next digit 4 from dividend 541 and add 0 to the quotient
\begin{array}{l}\phantom{13)}0\phantom{3}\\13\overline{)541}\\\end{array}
Use the 2^{nd} digit 4 from dividend 541
\begin{array}{l}\phantom{13)}04\phantom{4}\\13\overline{)541}\\\phantom{13)}\underline{\phantom{}52\phantom{9}}\\\phantom{13)9}2\\\end{array}
Find closest multiple of 13 to 54. We see that 4 \times 13 = 52 is the nearest. Now subtract 52 from 54 to get reminder 2. Add 4 to quotient.
\begin{array}{l}\phantom{13)}04\phantom{5}\\13\overline{)541}\\\phantom{13)}\underline{\phantom{}52\phantom{9}}\\\phantom{13)9}21\\\end{array}
Use the 3^{rd} digit 1 from dividend 541
\begin{array}{l}\phantom{13)}041\phantom{6}\\13\overline{)541}\\\phantom{13)}\underline{\phantom{}52\phantom{9}}\\\phantom{13)9}21\\\phantom{13)}\underline{\phantom{9}13\phantom{}}\\\phantom{13)99}8\\\end{array}
Find closest multiple of 13 to 21. We see that 1 \times 13 = 13 is the nearest. Now subtract 13 from 21 to get reminder 8. Add 1 to quotient.
\text{Quotient: }41 \text{Reminder: }8
Since 8 is less than 13, stop the division. The reminder is 8. The topmost line 041 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}