Evaluate
\frac{16875}{32}=527.34375
Factor
\frac{3 ^ {3} \cdot 5 ^ {4}}{2 ^ {5}} = 527\frac{11}{32} = 527.34375
Share
Copied to clipboard
\begin{array}{l}\phantom{1024)}\phantom{1}\\1024\overline{)540000}\\\end{array}
Use the 1^{st} digit 5 from dividend 540000
\begin{array}{l}\phantom{1024)}0\phantom{2}\\1024\overline{)540000}\\\end{array}
Since 5 is less than 1024, use the next digit 4 from dividend 540000 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}0\phantom{3}\\1024\overline{)540000}\\\end{array}
Use the 2^{nd} digit 4 from dividend 540000
\begin{array}{l}\phantom{1024)}00\phantom{4}\\1024\overline{)540000}\\\end{array}
Since 54 is less than 1024, use the next digit 0 from dividend 540000 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}00\phantom{5}\\1024\overline{)540000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 540000
\begin{array}{l}\phantom{1024)}000\phantom{6}\\1024\overline{)540000}\\\end{array}
Since 540 is less than 1024, use the next digit 0 from dividend 540000 and add 0 to the quotient
\begin{array}{l}\phantom{1024)}000\phantom{7}\\1024\overline{)540000}\\\end{array}
Use the 4^{th} digit 0 from dividend 540000
\begin{array}{l}\phantom{1024)}0005\phantom{8}\\1024\overline{)540000}\\\phantom{1024)}\underline{\phantom{}5120\phantom{99}}\\\phantom{1024)9}280\\\end{array}
Find closest multiple of 1024 to 5400. We see that 5 \times 1024 = 5120 is the nearest. Now subtract 5120 from 5400 to get reminder 280. Add 5 to quotient.
\begin{array}{l}\phantom{1024)}0005\phantom{9}\\1024\overline{)540000}\\\phantom{1024)}\underline{\phantom{}5120\phantom{99}}\\\phantom{1024)9}2800\\\end{array}
Use the 5^{th} digit 0 from dividend 540000
\begin{array}{l}\phantom{1024)}00052\phantom{10}\\1024\overline{)540000}\\\phantom{1024)}\underline{\phantom{}5120\phantom{99}}\\\phantom{1024)9}2800\\\phantom{1024)}\underline{\phantom{9}2048\phantom{9}}\\\phantom{1024)99}752\\\end{array}
Find closest multiple of 1024 to 2800. We see that 2 \times 1024 = 2048 is the nearest. Now subtract 2048 from 2800 to get reminder 752. Add 2 to quotient.
\begin{array}{l}\phantom{1024)}00052\phantom{11}\\1024\overline{)540000}\\\phantom{1024)}\underline{\phantom{}5120\phantom{99}}\\\phantom{1024)9}2800\\\phantom{1024)}\underline{\phantom{9}2048\phantom{9}}\\\phantom{1024)99}7520\\\end{array}
Use the 6^{th} digit 0 from dividend 540000
\begin{array}{l}\phantom{1024)}000527\phantom{12}\\1024\overline{)540000}\\\phantom{1024)}\underline{\phantom{}5120\phantom{99}}\\\phantom{1024)9}2800\\\phantom{1024)}\underline{\phantom{9}2048\phantom{9}}\\\phantom{1024)99}7520\\\phantom{1024)}\underline{\phantom{99}7168\phantom{}}\\\phantom{1024)999}352\\\end{array}
Find closest multiple of 1024 to 7520. We see that 7 \times 1024 = 7168 is the nearest. Now subtract 7168 from 7520 to get reminder 352. Add 7 to quotient.
\text{Quotient: }527 \text{Reminder: }352
Since 352 is less than 1024, stop the division. The reminder is 352. The topmost line 000527 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 527.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}