Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{1350)}\phantom{1}\\1350\overline{)5400}\\\end{array}
Use the 1^{st} digit 5 from dividend 5400
\begin{array}{l}\phantom{1350)}0\phantom{2}\\1350\overline{)5400}\\\end{array}
Since 5 is less than 1350, use the next digit 4 from dividend 5400 and add 0 to the quotient
\begin{array}{l}\phantom{1350)}0\phantom{3}\\1350\overline{)5400}\\\end{array}
Use the 2^{nd} digit 4 from dividend 5400
\begin{array}{l}\phantom{1350)}00\phantom{4}\\1350\overline{)5400}\\\end{array}
Since 54 is less than 1350, use the next digit 0 from dividend 5400 and add 0 to the quotient
\begin{array}{l}\phantom{1350)}00\phantom{5}\\1350\overline{)5400}\\\end{array}
Use the 3^{rd} digit 0 from dividend 5400
\begin{array}{l}\phantom{1350)}000\phantom{6}\\1350\overline{)5400}\\\end{array}
Since 540 is less than 1350, use the next digit 0 from dividend 5400 and add 0 to the quotient
\begin{array}{l}\phantom{1350)}000\phantom{7}\\1350\overline{)5400}\\\end{array}
Use the 4^{th} digit 0 from dividend 5400
\begin{array}{l}\phantom{1350)}0004\phantom{8}\\1350\overline{)5400}\\\phantom{1350)}\underline{\phantom{}5400\phantom{}}\\\phantom{1350)9999}0\\\end{array}
Find closest multiple of 1350 to 5400. We see that 4 \times 1350 = 5400 is the nearest. Now subtract 5400 from 5400 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 1350, stop the division. The reminder is 0. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}