Evaluate
18
Factor
2\times 3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{30)}\phantom{1}\\30\overline{)540}\\\end{array}
Use the 1^{st} digit 5 from dividend 540
\begin{array}{l}\phantom{30)}0\phantom{2}\\30\overline{)540}\\\end{array}
Since 5 is less than 30, use the next digit 4 from dividend 540 and add 0 to the quotient
\begin{array}{l}\phantom{30)}0\phantom{3}\\30\overline{)540}\\\end{array}
Use the 2^{nd} digit 4 from dividend 540
\begin{array}{l}\phantom{30)}01\phantom{4}\\30\overline{)540}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}24\\\end{array}
Find closest multiple of 30 to 54. We see that 1 \times 30 = 30 is the nearest. Now subtract 30 from 54 to get reminder 24. Add 1 to quotient.
\begin{array}{l}\phantom{30)}01\phantom{5}\\30\overline{)540}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}240\\\end{array}
Use the 3^{rd} digit 0 from dividend 540
\begin{array}{l}\phantom{30)}018\phantom{6}\\30\overline{)540}\\\phantom{30)}\underline{\phantom{}30\phantom{9}}\\\phantom{30)}240\\\phantom{30)}\underline{\phantom{}240\phantom{}}\\\phantom{30)999}0\\\end{array}
Find closest multiple of 30 to 240. We see that 8 \times 30 = 240 is the nearest. Now subtract 240 from 240 to get reminder 0. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }0
Since 0 is less than 30, stop the division. The reminder is 0. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}