Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

54\left(1+x\right)^{2}=1215
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
54\left(1+2x+x^{2}\right)=1215
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
54+108x+54x^{2}=1215
Use the distributive property to multiply 54 by 1+2x+x^{2}.
54+108x+54x^{2}-1215=0
Subtract 1215 from both sides.
-1161+108x+54x^{2}=0
Subtract 1215 from 54 to get -1161.
54x^{2}+108x-1161=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-108±\sqrt{108^{2}-4\times 54\left(-1161\right)}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, 108 for b, and -1161 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-108±\sqrt{11664-4\times 54\left(-1161\right)}}{2\times 54}
Square 108.
x=\frac{-108±\sqrt{11664-216\left(-1161\right)}}{2\times 54}
Multiply -4 times 54.
x=\frac{-108±\sqrt{11664+250776}}{2\times 54}
Multiply -216 times -1161.
x=\frac{-108±\sqrt{262440}}{2\times 54}
Add 11664 to 250776.
x=\frac{-108±162\sqrt{10}}{2\times 54}
Take the square root of 262440.
x=\frac{-108±162\sqrt{10}}{108}
Multiply 2 times 54.
x=\frac{162\sqrt{10}-108}{108}
Now solve the equation x=\frac{-108±162\sqrt{10}}{108} when ± is plus. Add -108 to 162\sqrt{10}.
x=\frac{3\sqrt{10}}{2}-1
Divide -108+162\sqrt{10} by 108.
x=\frac{-162\sqrt{10}-108}{108}
Now solve the equation x=\frac{-108±162\sqrt{10}}{108} when ± is minus. Subtract 162\sqrt{10} from -108.
x=-\frac{3\sqrt{10}}{2}-1
Divide -108-162\sqrt{10} by 108.
x=\frac{3\sqrt{10}}{2}-1 x=-\frac{3\sqrt{10}}{2}-1
The equation is now solved.
54\left(1+x\right)^{2}=1215
Multiply 1+x and 1+x to get \left(1+x\right)^{2}.
54\left(1+2x+x^{2}\right)=1215
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
54+108x+54x^{2}=1215
Use the distributive property to multiply 54 by 1+2x+x^{2}.
108x+54x^{2}=1215-54
Subtract 54 from both sides.
108x+54x^{2}=1161
Subtract 54 from 1215 to get 1161.
54x^{2}+108x=1161
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{54x^{2}+108x}{54}=\frac{1161}{54}
Divide both sides by 54.
x^{2}+\frac{108}{54}x=\frac{1161}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}+2x=\frac{1161}{54}
Divide 108 by 54.
x^{2}+2x=\frac{43}{2}
Reduce the fraction \frac{1161}{54} to lowest terms by extracting and canceling out 27.
x^{2}+2x+1^{2}=\frac{43}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{43}{2}+1
Square 1.
x^{2}+2x+1=\frac{45}{2}
Add \frac{43}{2} to 1.
\left(x+1\right)^{2}=\frac{45}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{45}{2}}
Take the square root of both sides of the equation.
x+1=\frac{3\sqrt{10}}{2} x+1=-\frac{3\sqrt{10}}{2}
Simplify.
x=\frac{3\sqrt{10}}{2}-1 x=-\frac{3\sqrt{10}}{2}-1
Subtract 1 from both sides of the equation.