Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

54x^{2}+863x-432=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-863±\sqrt{863^{2}-4\times 54\left(-432\right)}}{2\times 54}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-863±\sqrt{744769-4\times 54\left(-432\right)}}{2\times 54}
Square 863.
x=\frac{-863±\sqrt{744769-216\left(-432\right)}}{2\times 54}
Multiply -4 times 54.
x=\frac{-863±\sqrt{744769+93312}}{2\times 54}
Multiply -216 times -432.
x=\frac{-863±\sqrt{838081}}{2\times 54}
Add 744769 to 93312.
x=\frac{-863±\sqrt{838081}}{108}
Multiply 2 times 54.
x=\frac{\sqrt{838081}-863}{108}
Now solve the equation x=\frac{-863±\sqrt{838081}}{108} when ± is plus. Add -863 to \sqrt{838081}.
x=\frac{-\sqrt{838081}-863}{108}
Now solve the equation x=\frac{-863±\sqrt{838081}}{108} when ± is minus. Subtract \sqrt{838081} from -863.
54x^{2}+863x-432=54\left(x-\frac{\sqrt{838081}-863}{108}\right)\left(x-\frac{-\sqrt{838081}-863}{108}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-863+\sqrt{838081}}{108} for x_{1} and \frac{-863-\sqrt{838081}}{108} for x_{2}.
x ^ 2 +\frac{863}{54}x -8 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 54
r + s = -\frac{863}{54} rs = -8
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{863}{108} - u s = -\frac{863}{108} + u
Two numbers r and s sum up to -\frac{863}{54} exactly when the average of the two numbers is \frac{1}{2}*-\frac{863}{54} = -\frac{863}{108}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{863}{108} - u) (-\frac{863}{108} + u) = -8
To solve for unknown quantity u, substitute these in the product equation rs = -8
\frac{744769}{11664} - u^2 = -8
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -8-\frac{744769}{11664} = -\frac{838081}{11664}
Simplify the expression by subtracting \frac{744769}{11664} on both sides
u^2 = \frac{838081}{11664} u = \pm\sqrt{\frac{838081}{11664}} = \pm \frac{\sqrt{838081}}{108}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{863}{108} - \frac{\sqrt{838081}}{108} = -16.467 s = -\frac{863}{108} + \frac{\sqrt{838081}}{108} = 0.486
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.