Solve for x
x=-\frac{131}{540}\approx -0.242592593
Graph
Share
Copied to clipboard
54x+14=\frac{9}{10}
Reduce the fraction \frac{27}{30} to lowest terms by extracting and canceling out 3.
54x=\frac{9}{10}-14
Subtract 14 from both sides.
54x=\frac{9}{10}-\frac{140}{10}
Convert 14 to fraction \frac{140}{10}.
54x=\frac{9-140}{10}
Since \frac{9}{10} and \frac{140}{10} have the same denominator, subtract them by subtracting their numerators.
54x=-\frac{131}{10}
Subtract 140 from 9 to get -131.
x=\frac{-\frac{131}{10}}{54}
Divide both sides by 54.
x=\frac{-131}{10\times 54}
Express \frac{-\frac{131}{10}}{54} as a single fraction.
x=\frac{-131}{540}
Multiply 10 and 54 to get 540.
x=-\frac{131}{540}
Fraction \frac{-131}{540} can be rewritten as -\frac{131}{540} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}