Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

6\left(9a-8a^{2}\right)
Factor out 6.
a\left(9-8a\right)
Consider 9a-8a^{2}. Factor out a.
6a\left(-8a+9\right)
Rewrite the complete factored expression.
-48a^{2}+54a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-54±\sqrt{54^{2}}}{2\left(-48\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-54±54}{2\left(-48\right)}
Take the square root of 54^{2}.
a=\frac{-54±54}{-96}
Multiply 2 times -48.
a=\frac{0}{-96}
Now solve the equation a=\frac{-54±54}{-96} when ± is plus. Add -54 to 54.
a=0
Divide 0 by -96.
a=-\frac{108}{-96}
Now solve the equation a=\frac{-54±54}{-96} when ± is minus. Subtract 54 from -54.
a=\frac{9}{8}
Reduce the fraction \frac{-108}{-96} to lowest terms by extracting and canceling out 12.
-48a^{2}+54a=-48a\left(a-\frac{9}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{9}{8} for x_{2}.
-48a^{2}+54a=-48a\times \frac{-8a+9}{-8}
Subtract \frac{9}{8} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-48a^{2}+54a=6a\left(-8a+9\right)
Cancel out 8, the greatest common factor in -48 and -8.