Solve for x
x=\frac{\sqrt{91}+35}{108}\approx 0.412401778
x=\frac{35-\sqrt{91}}{108}\approx 0.23574637
Graph
Share
Copied to clipboard
54x^{2}-35x+\frac{21}{4}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 54\times \frac{21}{4}}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, -35 for b, and \frac{21}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 54\times \frac{21}{4}}}{2\times 54}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-216\times \frac{21}{4}}}{2\times 54}
Multiply -4 times 54.
x=\frac{-\left(-35\right)±\sqrt{1225-1134}}{2\times 54}
Multiply -216 times \frac{21}{4}.
x=\frac{-\left(-35\right)±\sqrt{91}}{2\times 54}
Add 1225 to -1134.
x=\frac{35±\sqrt{91}}{2\times 54}
The opposite of -35 is 35.
x=\frac{35±\sqrt{91}}{108}
Multiply 2 times 54.
x=\frac{\sqrt{91}+35}{108}
Now solve the equation x=\frac{35±\sqrt{91}}{108} when ± is plus. Add 35 to \sqrt{91}.
x=\frac{35-\sqrt{91}}{108}
Now solve the equation x=\frac{35±\sqrt{91}}{108} when ± is minus. Subtract \sqrt{91} from 35.
x=\frac{\sqrt{91}+35}{108} x=\frac{35-\sqrt{91}}{108}
The equation is now solved.
54x^{2}-35x+\frac{21}{4}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
54x^{2}-35x+\frac{21}{4}-\frac{21}{4}=-\frac{21}{4}
Subtract \frac{21}{4} from both sides of the equation.
54x^{2}-35x=-\frac{21}{4}
Subtracting \frac{21}{4} from itself leaves 0.
\frac{54x^{2}-35x}{54}=-\frac{\frac{21}{4}}{54}
Divide both sides by 54.
x^{2}-\frac{35}{54}x=-\frac{\frac{21}{4}}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}-\frac{35}{54}x=-\frac{7}{72}
Divide -\frac{21}{4} by 54.
x^{2}-\frac{35}{54}x+\left(-\frac{35}{108}\right)^{2}=-\frac{7}{72}+\left(-\frac{35}{108}\right)^{2}
Divide -\frac{35}{54}, the coefficient of the x term, by 2 to get -\frac{35}{108}. Then add the square of -\frac{35}{108} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{54}x+\frac{1225}{11664}=-\frac{7}{72}+\frac{1225}{11664}
Square -\frac{35}{108} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{54}x+\frac{1225}{11664}=\frac{91}{11664}
Add -\frac{7}{72} to \frac{1225}{11664} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{108}\right)^{2}=\frac{91}{11664}
Factor x^{2}-\frac{35}{54}x+\frac{1225}{11664}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{108}\right)^{2}}=\sqrt{\frac{91}{11664}}
Take the square root of both sides of the equation.
x-\frac{35}{108}=\frac{\sqrt{91}}{108} x-\frac{35}{108}=-\frac{\sqrt{91}}{108}
Simplify.
x=\frac{\sqrt{91}+35}{108} x=\frac{35-\sqrt{91}}{108}
Add \frac{35}{108} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}