Factor
3\left(2x-3\right)\left(9x-10\right)
Evaluate
54x^{2}-141x+90
Graph
Share
Copied to clipboard
3\left(18x^{2}-47x+30\right)
Factor out 3.
a+b=-47 ab=18\times 30=540
Consider 18x^{2}-47x+30. Factor the expression by grouping. First, the expression needs to be rewritten as 18x^{2}+ax+bx+30. To find a and b, set up a system to be solved.
-1,-540 -2,-270 -3,-180 -4,-135 -5,-108 -6,-90 -9,-60 -10,-54 -12,-45 -15,-36 -18,-30 -20,-27
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 540.
-1-540=-541 -2-270=-272 -3-180=-183 -4-135=-139 -5-108=-113 -6-90=-96 -9-60=-69 -10-54=-64 -12-45=-57 -15-36=-51 -18-30=-48 -20-27=-47
Calculate the sum for each pair.
a=-27 b=-20
The solution is the pair that gives sum -47.
\left(18x^{2}-27x\right)+\left(-20x+30\right)
Rewrite 18x^{2}-47x+30 as \left(18x^{2}-27x\right)+\left(-20x+30\right).
9x\left(2x-3\right)-10\left(2x-3\right)
Factor out 9x in the first and -10 in the second group.
\left(2x-3\right)\left(9x-10\right)
Factor out common term 2x-3 by using distributive property.
3\left(2x-3\right)\left(9x-10\right)
Rewrite the complete factored expression.
54x^{2}-141x+90=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-141\right)±\sqrt{\left(-141\right)^{2}-4\times 54\times 90}}{2\times 54}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-141\right)±\sqrt{19881-4\times 54\times 90}}{2\times 54}
Square -141.
x=\frac{-\left(-141\right)±\sqrt{19881-216\times 90}}{2\times 54}
Multiply -4 times 54.
x=\frac{-\left(-141\right)±\sqrt{19881-19440}}{2\times 54}
Multiply -216 times 90.
x=\frac{-\left(-141\right)±\sqrt{441}}{2\times 54}
Add 19881 to -19440.
x=\frac{-\left(-141\right)±21}{2\times 54}
Take the square root of 441.
x=\frac{141±21}{2\times 54}
The opposite of -141 is 141.
x=\frac{141±21}{108}
Multiply 2 times 54.
x=\frac{162}{108}
Now solve the equation x=\frac{141±21}{108} when ± is plus. Add 141 to 21.
x=\frac{3}{2}
Reduce the fraction \frac{162}{108} to lowest terms by extracting and canceling out 54.
x=\frac{120}{108}
Now solve the equation x=\frac{141±21}{108} when ± is minus. Subtract 21 from 141.
x=\frac{10}{9}
Reduce the fraction \frac{120}{108} to lowest terms by extracting and canceling out 12.
54x^{2}-141x+90=54\left(x-\frac{3}{2}\right)\left(x-\frac{10}{9}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{10}{9} for x_{2}.
54x^{2}-141x+90=54\times \frac{2x-3}{2}\left(x-\frac{10}{9}\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
54x^{2}-141x+90=54\times \frac{2x-3}{2}\times \frac{9x-10}{9}
Subtract \frac{10}{9} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
54x^{2}-141x+90=54\times \frac{\left(2x-3\right)\left(9x-10\right)}{2\times 9}
Multiply \frac{2x-3}{2} times \frac{9x-10}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
54x^{2}-141x+90=54\times \frac{\left(2x-3\right)\left(9x-10\right)}{18}
Multiply 2 times 9.
54x^{2}-141x+90=3\left(2x-3\right)\left(9x-10\right)
Cancel out 18, the greatest common factor in 54 and 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}