Solve for x (complex solution)
x=\frac{\sqrt{2}i}{18}-\frac{1}{9}\approx -0.111111111+0.07856742i
x=-\frac{\sqrt{2}i}{18}-\frac{1}{9}\approx -0.111111111-0.07856742i
Graph
Share
Copied to clipboard
54x^{2}+12x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 54}}{2\times 54}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 54 for a, 12 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 54}}{2\times 54}
Square 12.
x=\frac{-12±\sqrt{144-216}}{2\times 54}
Multiply -4 times 54.
x=\frac{-12±\sqrt{-72}}{2\times 54}
Add 144 to -216.
x=\frac{-12±6\sqrt{2}i}{2\times 54}
Take the square root of -72.
x=\frac{-12±6\sqrt{2}i}{108}
Multiply 2 times 54.
x=\frac{-12+6\sqrt{2}i}{108}
Now solve the equation x=\frac{-12±6\sqrt{2}i}{108} when ± is plus. Add -12 to 6i\sqrt{2}.
x=\frac{\sqrt{2}i}{18}-\frac{1}{9}
Divide -12+6i\sqrt{2} by 108.
x=\frac{-6\sqrt{2}i-12}{108}
Now solve the equation x=\frac{-12±6\sqrt{2}i}{108} when ± is minus. Subtract 6i\sqrt{2} from -12.
x=-\frac{\sqrt{2}i}{18}-\frac{1}{9}
Divide -12-6i\sqrt{2} by 108.
x=\frac{\sqrt{2}i}{18}-\frac{1}{9} x=-\frac{\sqrt{2}i}{18}-\frac{1}{9}
The equation is now solved.
54x^{2}+12x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
54x^{2}+12x+1-1=-1
Subtract 1 from both sides of the equation.
54x^{2}+12x=-1
Subtracting 1 from itself leaves 0.
\frac{54x^{2}+12x}{54}=-\frac{1}{54}
Divide both sides by 54.
x^{2}+\frac{12}{54}x=-\frac{1}{54}
Dividing by 54 undoes the multiplication by 54.
x^{2}+\frac{2}{9}x=-\frac{1}{54}
Reduce the fraction \frac{12}{54} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=-\frac{1}{54}+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{1}{54}+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=-\frac{1}{162}
Add -\frac{1}{54} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{9}\right)^{2}=-\frac{1}{162}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{-\frac{1}{162}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{\sqrt{2}i}{18} x+\frac{1}{9}=-\frac{\sqrt{2}i}{18}
Simplify.
x=\frac{\sqrt{2}i}{18}-\frac{1}{9} x=-\frac{\sqrt{2}i}{18}-\frac{1}{9}
Subtract \frac{1}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}